6 resultados para Geology--Canada, Eastern--Maps
em University of Queensland eSpace - Australia
Resumo:
The Jiaodong gold province is the largest gold repository in China. Both mineralization and granitoid hosts are spatially related to the crustal-scale Tan-Lu strike-slip fault system, which developed along the Mesozoic continental margin in eastern China. A series of Ar-40/Ar-39 laser incremental heating analyses of hydrothermal sericite/muscovite from three major gold deposits (Jiaojia, Xincheng, and Wangershan) and igneous biotite from the granodiorite hosts were performed to establish a possible temporal link between gold mineralization, magmatism, and movement along the Tan-Lu fault zone. Magmatic biotite crystals yield well-defined and concordant plateau ages between 124.5+/-0.4 Ma and 124.0+/-0.4 Ma (2sigma), whereas sericite and muscovite samples (a total of 30 single separates) give reproducible plateau ages ranging from 121.0+/-0.4 Ma to 119.2+/-0.2 Ma (2sigma). An integration of our Ar-40/Ar-39 results with age data from other major gold deposits in Jiaodong demonstrates that widespread gold mineralization occurred contemporaneously during a 2-3-m.yr. period. Most gold deposits show intimate spatial associations with abundant mafic to intermediate dikes. The mafic dikes have K-Ar ages of 123.5-119.6 Ma, in excellent agreement with those of the gold deposits. These newly obtained Ar-40/Ar-39 ages, in combination with other independent geological and geochronological data on granodioritic intrusions (130-126 Ma), volcanic rocks (1243.6-114.7 Ma), and deformed rocks within strike-slip faults (132-120 Ma) in Jiaodong or adjacent areas, also support the idea that gold mineralization postdated the granodioritic magmatism but was contemporaneous with mafic magmatism and volcanism, all controlled by the transtensional motion along the Tan-Lu fault in the Early Cretaceous.
Resumo:
A new mesosuchian crocoddian from the Nova Olinda Member of the Crato Formation (Lower Cretaceous, Aptian) of north-eastern Brazil is described. Susisuchus anatoceps gen. et sp. nov. is the first crocodillan to be reported from this formation. It is represented by an incomplete, partially articulated skeleton: the skull and mandible, partial postcranial axial skeleton, forelimbs and portions of the osteodermal skeleton. Preservation of soft tissues includes the skin surrounding both forelimbs and the digits of the right hand. The state of preservation of the specimen suggests that it was incorporated into the basin as a desiccated carcass. Susisuchus anatoceps is one of the oldest crocodilians with a eusuchian-type dorsal shield, comprising a tetraserial paravertebral shield and, either side of this, two sagittal rows of accessory osteoderms. It also possesses amphicoelous thoracic, lumbar and caudal vertebrae. This combination of postcranial features have never before been seen in a crocodilian and warrant the erection of a new family within Mesosuchia: Susisuchidae. Taxonomically, S. anatoceps is similar to a number of Lower Cretaceous mesosuchians previously considered to have given rise to eusuchians, most notably the Glen Rose crocodilian and a new, but as yet undescribed crocodillan from the Lower Cretaceous Winton Formation of western Queensland, Australia. Preliminary preparation of the Winton crocodilian indicates that it may belong to Susisuchidae, supporting the hypotheses of interchange between the vertebrate faunas of South America and Australia during the Lower Cretaceous.
Resumo:
The Jiaodong gold province, the largest gold-producing district in China, is located in the jiaodong peninsula at the eastern margin of the North China craton and bounded by the continental scale Tan-Lu fault, 40 kin to the west. Previous geochronological studies suggest that pervasive gold deposition took place in the western part of the province between 122 and 119 Ma. Here we report high-quality Ar-40/Ar-39 ages of the Pengjiakuang and Rushan deposits from the eastern part of the jiaodong gold province, placing additional chronological constraints on the timing of regional mineralization. Seven sericite grains extracted from auriferous alteration assemblages at the Pengiiakuang deposit yielded well-defined plateau ages between 120.9 +/- 0.4 and 119.1 +/- 0.2 Ma (2 sigma). Three separates of igneous biotite from a sample of the Queshan gneissic granite, adjacent to the Pengjiakuang deposit, gave reproducible plateau ages of 124.6 +/- 0.6 to 123.9 +/- 0.4 Ma (2 sigma). Six sericite separates front two samples in the Rushan deposit yielded Ar-40/Ar-39 plateau ages at 109.3 +/- 0.3 to 107.7 +/- 0.5 Ma (2 sigma), whereas biotite from the Kunyushan monzogranite that hosts the Rushan deposit had plateau ages ranging from 129.0 +/- 0.6 to 126.9 +/- 0.6 Ma (3 separates front one sample). The apparent age gap between hydrothermal sericite and magmtic biotite from both deposits, together with the similar argon closure temperatures for these mica minerals, suggest that gold mineralization had no direct relationship to the granitoid magmatism. Instead, gold deposition coincided with the emplacement of mafic to intermediate dikes widespread in the jiaodong gold province, which have been dated at ca. 122 to 119 Ma and, less commonly, at 110 to 102 Ma. The new Ar-40/Ar-39 ages from the eastern jiaodong peninsula, when combined with published data from the western part suggest that gold mineralization was broadly contemporaneous throughout the district. The Early Cretaceous gold mineralization also is widely developed in four other major gold districts along the Tan-Lu fault. The temporal and spatial correlation of these gold deposits with mafic to intermediate dikes commonly found in most mineralized areas, the presence of well-documented metamorphic core complexes and half-graben basins along the Tan-Lu fault, and voluminous basalts therein, suggest that the Early Cretaceous was an important period of lithospheric extension, possibly caused by the late Mesozoic lithospheric thinning beneath the eastern block of the North China craton. Lithospheric thinning and extension could have resulted in abnormally high heat and fluid fluxes necessary for large-scaled gold mineralization.