3 resultados para Geochemical processes

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chaotically structured diamictite from the inner ring syncline surrounding the central uplift of the Woodleigh impact structure contains shocked metamorphic and impact melt-rock fragments, largely derived from Ordovician and Devonian target sandstones. Coarse illite fractions (< 2 mu m) from the sandstones containing no K-feldspar yield K-Ar ages of around 400 Ma, whereas the K-Ar ages of authigenic clays of > 0.2 mu m fractions from the diamictite without smectite and K-feldspar cluster around 360 Ma, consistent with Rb-Sr data. Crystallisation of newly formed illite in the impact melt rock clasts and recrystallisation of earlier formed illite in the sandstone clasts preserved in the diamictite, are attributed to impact-induced hydrothermal processes in the Late Devonian. The illitic clays from the diamictite and from the sandstones have very similar trace element compositions, with significantly enriched incompatible lithophile elements, which increase in concentrations correlatively with those of the compatible ferromagnesian elements. The unusual trace element associations in the clays may be due to the involvement of hot gravity-driven basinal fluids that interacted with rocks of the Precambrian craton to the east of the study area, or with such material transported and reworked in the studied sedimentary succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica. From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sri derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial. The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing-freezing cycles, rather than by the type and amount of clastic sediment supply. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many geochemical reconstructions of environmental change in the mid and high latitudes but relatively few in the tropical latitudes, despite their considerable potential for reconstructing environmental processes that cannot be identified using more traditional proxies. Here we present one reconstruction of environmental change for the tropics. This reconstruction covers the past 50 ka using a suite of geochemical data from the high-resolution sequence of Lynch's Crater in northeast Queensland, Australia, a region highly sensitive to El Nino-Southern Oscillation (ENSO) activity. The 23 major oxides and trace elements measured Could be summarised by extracting three axes using principal components analysis (accounting for 72% of the variability). The data indicate that the greatest variability in the geochemical data accounted for erosional activity within the catchment that was associated with past changes in the frequency of ENSO activity (though this was less sensitive during wetter periods, probably as a result of buffering by high vegetation cover). The remaining variability was largely explained by elements that form complexes with organic compounds (e.g., humic acids) and those that are important nutrients for specific vegetation types (and therefore a measure of vegetation distribution). For more detailed reconstructions, further work is required to disentangle the complex controls of clements within sedimentary sequences. (c) 2005 Elsevier B.V. All rights reserved.