11 resultados para Geo-statistical model

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Published birthweight references in Australia do not fully take into account constitutional factors that influence birthweight and therefore may not provide an accurate reference to identify the infant with abnormal growth. Furthermore, studies in other regions that have derived adjusted (customised) birthweight references have applied untested assumptions in the statistical modelling. Aims: To validate the customised birthweight model and to produce a reference set of coefficients for estimating a customised birthweight that may be useful for maternity care in Australia and for future research. Methods: De-identified data were extracted from the clinical database for all births at the Mater Mother's Hospital, Brisbane, Australia, between January 1997 and June 2005. Births with missing data for the variables under study were excluded. In addition the following were excluded: multiple pregnancies, births less than 37 completed week's gestation, stillbirths, and major congenital abnormalities. Multivariate analysis was undertaken. A double cross-validation procedure was used to validate the model. Results: The study of 42 206 births demonstrated that, for statistical purposes, birthweight is normally distributed. Coefficients for the derivation of customised birthweight in an Australian population were developed and the statistical model is demonstrably robust. Conclusions: This study provides empirical data as to the robustness of the model to determine customised birthweight. Further research is required to define where normal physiology ends and pathology begins, and which segments of the population should be included in the construction of a customised birthweight standard.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: To investigate the association between selected social and behavioural (infant feeding and preventive dental practices) variables and the presence of early childhood caries in preschool children within the north Brisbane region. Methods: A cross sectional sample of 2515 children aged four to five years were examined in a preschool setting using prevalence (percentage with caries) and severity (dmft) indices. A self-administered questionnaire obtained information regarding selected social and behavioural variables. The data were modelled using multiple logistic regression analysis at the 5 per cent level of significance. Results: The final explanatory model for caries presence in four to five year old children included the variables breast feeding from three to six months of age (OR=0.7, CI=0.5, 1.0), sleeping with the bottle (OR=1.9, CI=1.5, 2.4), sipping from the bottle (OR=1.6, CI=1.2, 2.0), ethnicity other than Caucasian (OR=1.9, CI=1.4, 2.5), annual family income $20,000-$35,000 (OR = 1.7, CI=1.3, 2.3) and annual family income less than $20,000 (OR=2.1, CI=1.5, 2.8). Conclusion: A statistical model for early childhood caries in preschool children within the north Brisbane region has been constructed using selected social and behavioural determinants. Epidemiological data can be used for improved public oral health service planning and resource allocation within the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Areas of the landscape that are priorities for conservation should be those that are both vulnerable to threatening processes and that if lost or degraded, will result in conservation targets being compromised. While much attention is directed towards understanding the patterns of biodiversity, much less is given to determining the areas of the landscape most vulnerable to threats. We assessed the relative vulnerability of remaining areas of native forest to conversion to plantations in the ecologically significant temperate rainforest region of south central Chile. The area of the study region is 4.2 million ha and the extent of plantations is approximately 200000 ha. First, the spatial distribution of native forest conversion to plantations was determined. The variables related to the spatial distribution of this threatening process were identified through the development of a classification tree and the generation of a multivariate. spatially explicit, statistical model. The model of native forest conversion explained 43% of the deviance and the discrimination ability of the model was high. Predictions were made of where native forest conversion is likely to occur in the future. Due to patterns of climate, topography, soils and proximity to infrastructure and towns, remaining forest areas differ in their relative risk of being converted to plantations. Another factor that may increase the vulnerability of remaining native forest in a subset of the study region is the proposed construction of a highway. We found that 90% of the area of existing plantations within this region is within 2.5 km of roads. When the predictions of native forest conversion were recalculated accounting for the construction of this highway, it was found that: approximately 27000 ha of native forest had an increased probability of conversion. The areas of native forest identified to be vulnerable to conversion are outside of the existing reserve network. (C) 2004 Elsevier Ltd. All tights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: There is a recognized need to move from mortality to morbidity outcome predictions following traumatic injury. However, there are few morbidity outcome prediction scoring methods and these fail to incorporate important comorbidities or cofactors. This study aims to develop and evaluate a method that includes such variables. Methods: This was a consecutive case series registered in the Queensland Trauma Registry that consented to a prospective 12-month telephone conducted follow-up study. A multivariable statistical model was developed relating Trauma Registry data to trichotomized 12-month post-injury outcome (categories: no limitations, minor limitations and major limitations). Cross-validation techniques using successive single hold-out samples were then conducted to evaluate the model's predictive capabilities. Results: In total, 619 participated, with 337 (54%) experiencing no limitations, 101 (16%) experiencing minor limitations and 181 (29%) experiencing major limitations 12 months after injury. The final parsimonious multivariable statistical model included whether the injury was in the lower extremity body region, injury severity, age, length of hospital stay, pulse at admission and whether the participant was admitted to an intensive care unit. This model explained 21% of the variability in post-injury outcome. Predictively, 64% of those with no limitations, 18% of those with minor limitations and 37% of those with major limitations were correctly identified. Conclusion: Although carefully developed, this statistical model lacks the predictive power necessary for its use as a basis of a useful prognostic tool. Further research is required to identify variables other than those routinely used in the Trauma Registry to develop a model with the necessary predictive utility.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical tests of Load-Unload Response Ratio (LURR) signals are carried in order to verify statistical robustness of the previous studies using the Lattice Solid Model (MORA et al., 2002b). In each case 24 groups of samples with the same macroscopic parameters (tidal perturbation amplitude A, period T and tectonic loading rate k) but different particle arrangements are employed. Results of uni-axial compression experiments show that before the normalized time of catastrophic failure, the ensemble average LURR value rises significantly, in agreement with the observations of high LURR prior to the large earthquakes. In shearing tests, two parameters are found to control the correlation between earthquake occurrence and tidal stress. One is, A/(kT) controlling the phase shift between the peak seismicity rate and the peak amplitude of the perturbation stress. With an increase of this parameter, the phase shift is found to decrease. Another parameter, AT/k, controls the height of the probability density function (Pdf) of modeled seismicity. As this parameter increases, the Pdf becomes sharper and narrower, indicating a strong triggering. Statistical studies of LURR signals in shearing tests also suggest that except in strong triggering cases, where LURR cannot be calculated due to poor data in unloading cycles, the larger events are more likely to occur in higher LURR periods than the smaller ones, supporting the LURR hypothesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.