4 resultados para Geo-spatial datasets

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this article, we present several novel techniques to effectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important level-two topological relations: contains, contained, overlap, and disjoint. We first present a novel framework to construct a multiscale Euler histogram in 2D space with the guarantee of the exact summarization results for aligned windows in constant time. To minimize the storage space in such a multiscale Euler histogram, an approximate algorithm with the approximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform to a limited storage space where a multiscale histogram may be allowed to have only k Euler histograms, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy in approximately summarizing aligned windows. Then, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. We also investigate the problem of nonaligned windows and the problem of effectively partitioning the data space to support nonaligned window queries. Finally, we extend our techniques to 3D space. Our extensive experiments against both synthetic and real world datasets demonstrate that the approximate multiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost efficiency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for many popular real datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this paper, we present several novel techniques to eectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important topological relations: contains, contained, overlap, and disjoint. We rst present a novel framework to construct a multiscale histogram composed of multiple Euler histograms with the guarantee of the exact summarization results for aligned windows in constant time. Then we present an approximate algorithm, with the approximate ratio 19/12, to minimize the storage spaces of such multiscale Euler histograms, although the problem is generally NP-hard. To conform to a limited storage space where only k Euler histograms are allowed, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy. Finally, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. Our extensive experiments against both synthetic and real world datasets demonstrated that the approximate mul- tiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost effciency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for the real datasets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There have been many models developed by scientists to assist decision-makers in making socio-economic and environmental decisions. It is now recognised that there is a shift in the dominant paradigm to making decisions with stakeholders, rather than making decisions for stakeholders. Our paper investigates two case studies where group model building has been undertaken for maintaining biodiversity in Australia. The first case study focuses on preservation and management of green spaces and biodiversity in metropolitan Melbourne under the umbrella of the Melbourne 2030 planning strategy. A geographical information system is used to collate a number of spatial datasets encompassing a range of cultural and natural assets data layers including: existing open spaces, waterways, threatened fauna and flora, ecological vegetation covers, registered cultural heritage sites, and existing land parcel zoning. Group model building is incorporated into the study through eliciting weightings and ratings of importance for each datasets from urban planners to formulate different urban green system scenarios. The second case study focuses on modelling ecoregions from spatial datasets for the state of Queensland. The modelling combines collaborative expert knowledge and a vast amount of environmental data to build biogeographical classifications of regions. An information elicitation process is used to capture expert knowledge of ecoregions as geographical descriptions, and to transform this into prior probability distributions that characterise regions in terms of environmental variables. This prior information is combined with measured data on the environmental variables within a Bayesian modelling technique to produce the final classified regions. We describe how linked views between descriptive information, mapping and statistical plots are used to decide upon representative regions that satisfy a number of criteria for biodiversity and conservation. This paper discusses the advantages and problems encountered when undertaking group model building. Future research will extend the group model building approach to include interested individuals and community groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.