3 resultados para Genotyping analysis

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various marker systems exist for genetic analysis of horticultural species. Isozymes were first applied to the woody perennial nut crop, macadamia, in the early 1990s. The advent of DNA markers saw the development, for macadamia, of STMS (sequence-tagged microsatellite site), RAPD (randomly amplified polymorphic DNA), and RAF (randomly amplified DNA fingerprinting). The RAF technique typically generates dominant markers, but within the dominant marker profiles, certain primers also amplify multi-allelic co-dominant markers that are suspected to be microsatellites. In this paper, we confirm this for one such marker, and describe how RAF primers can be chosen that amplify one or more putative microsatellites. This approach of genotyping anonymous microsatellite markers via RAF is designated RAMiFi (randomly amplified microsatellite fingerprinting). Several marker systems were compared for the type, amount, and cost-efficiency of the information generated, using data from published studies on macadamia. The markers were also compared for the way they clustered a common set of accessions. The RAMiFi approach was identified as the most efficient and economical. The availability of such a versatile tool offers many advantages for the genetic characterisation of horticultural species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleoticle polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S. aureus. Here, it is shown that these seven SNPs efficiently resolve the major MRSA lineages and define 27 genotypes. The SNP-based genotypes are consistent with the MRSA population structure as defined by eBURST analysis. The capacity of binary markers to improve resolution was tested using 107 diverse MRSA isolates of Australian origin that encompass nine SNP-based genotypes. The addition of the virulence-associated genes cna, pvl and bbplsdrE, and the integrated plasmids pT181, p1258 and pUB110, resolved the nine SNP-based genotypes into 21 combinatorial genotypes. Subtyping of the SCCmec locus revealed new SCCmec types and increased the number of combinatorial genotypes to 24. It was concluded that these polymorphisms provide a facile means of assigning MRSA isolates into well-recognized lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One approach to microbial genotyping is to make use of sets of single-nucleotide polymorphisms (SNPs) in combination with binary markers. Here we report the modification and automation of a SNP-plus-binary-marker-based approach to the genotyping of Staphylococcus aureus and its application to 391 S. aureus isolates from southeast Queensland, Australia. The SNPs used were arcC210, tpi243, arcC162, gmk318, pta294, tpi36, tpi241, and pta383. These provide a Simpson's index of diversity (D) of 0.95 with respect to the S. aureus multilocus sequence typing database and define 61 genotypes and the major clonal complexes. The binary markers used were pvl, cna, sdrE, pT181, and pUB110. Two novel real-time PCR formats for interrogating these markers were compared. One of these makes use of light upon extension (LUX) primers and biplexed reactions, while the other is a streamlined modification of kinetic PCR using SYBR green. The latter format proved to be more robust. In addition, automated methods for DNA template preparation, reaction setup, and data analysis were developed. A single SNP-based method for ST-93 (Queensland clone) identification was also devised. The genotyping revealed the numerical importance of the South West Pacific and Queensland community-acquired methicillin-resistant S. aureus (MRSA) clones and the clonal complex 239 Aus-1/Aus-2 hospital-associated MRSA. There was a strong association between the community-acquired clones and pvl.