233 resultados para Genetic resistance
em University of Queensland eSpace - Australia
Resumo:
High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently, been detected in Australia and hi art effort to isolate the genes responsible For resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with art average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides similar to50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250 x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F-5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
Phytophthora root rot, caused by Phytophthora medicaginis, is a major limitation to lucerne ( Medicago sativa L.) production in Australia and North America. Quantitative trait loci (QTLs) involved in resistance to P. medicaginis were identified in a lucerne backcross population of 120 individuals. A genetic linkage map was constructed for tetraploid lucerne using 50 RAPD ( randomly amplified polymorphic DNA), 104 AFLP (amplified fragment length polymorphism) markers, and one SSR ( simple sequence repeat or microsatellite) marker, which originated from the resistant parent (W116); 13 markers remain unlinked. The linkage map contains 18 linkage groups covering 2136.5 cM, with an average distance of 15.0 cM between markers. Four of the linkage groups contained only either 2 or 3 markers. Using duplex markers and repulsion phase linkages the map condensed to 7 homology groups and 2 unassigned linkage groups. Three regions located on linkage groups 2, 14, and 18, were identified as associated with root reaction and the QTLs explained 6 - 15% of the phenotypic variation. The research also indicates that different resistance QTLs are involved in conferring resistance in different organs. Two QTLs were identified as associated with disease resistance expressed after inoculation of detached leaves. The marker, W11-2 on group 18, identified as associated with root reaction, contributed 7% of the phenotypic variation in leaf response in our population. This marker appears to be linked to a QTL encoding a resistance factor contributing to both root and leaf reaction. One other QTL, not identified as associated with root reaction, was positioned on group 1 and contributed to 6% of the variation. This genetic linkage map provides an entry point for future molecular-based improvement of lucerne in Australia, and markers linked to the QTLs we have reported should be useful for marker-assisted selection for partial resistance to P. medicaginis in lucerne.
Resumo:
Anthracnose, caused by Colletotrichum trifolii, is one of the most serious diseases influencing lucerne persistence and productivity in eastern Australia. The disease is largely controlled by plant resistance; however, new pathotypes of C. trifolii have developed in Australia, seriously limiting the productive life of susceptible cultivars. This paper describes an incompletely recessive and quantitatively inherited resistance to C. trifolii identified in a clone (W116) from cv. Sequel. S-1, F-1, F-2 and backcross populations of W116 and D (highly susceptible clone) were studied for their reaction to C. trifolii race 1. Resistance was found to be quantitatively inherited, and quantitative trait loci associated with resistance and susceptibility were identified in a backcross population (D x W116) x D using random amplified polymorphic DNA and amplified fragment length polymorphic markers. A multi-locus region on linkage group 4 was found to contribute significantly to the resistance phenotype. The application of DNA markers to allow exploitation of this quantitatively inherited resistance in lucerne breeding is discussed.
Resumo:
The severity of systemic infection with the yeast Candida albicans has been shown to be under complex genetic control. C57/L mice carry an allele that is associated with an increase in tissue destruction when compared with C57BI/6 mice; however, the gene affects only the severity of tissue lesions, and does not influence the magnitude of the fungal burden in either kidney or brain. Studies in [C57/L x C57BI/6]F1 hybrid mice, and [C57/L x C57BI/6]F1 x C57/L backcross mice, demonstrated that the gene behaves as a simple Mendelian co-dominant. (C) 1998 Academic Press.
Resumo:
We generated transgenic sugarcane plants that express an albicidin detoxifying gene (albD), which was cloned from a bacterium that provides biocontrol against leaf scald disease. Plants with albicidin detoxification capacity equivalent to 1-10 ng of AlbD enzyme per mg of leaf protein did not develop chlorotic disease symptoms in inoculated leaves, whereas all untransformed control plants developed severe symptoms. Transgenic lines with high AlbD activity in young stems were also protected against systemic multiplication of the pathogen, which is the precursor to economic disease. We have shown that genetic modification to express a toxin-resistance gene can confer resistance to both disease symptoms and multiplication of a toxigenic pathogen in its host.
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.
Resumo:
Breeding methodologies for cultivated lucerne (Medicago sativa L.), an autotetraploid, have changed little over the last 50 years, with reliance on polycross methods and recurrent phenotypic selection. There has been, however, an increase in our understanding of lucerne biology, in particular the genetic relationships between members of the M. sativa complex, as deduced by DNA analysis. Also, the differences in breeding behaviour and vigour of diploids versus autotetraploids, and the underlying genetic causes, are discussed in relation to lucerne improvement. Medicago falcata, a member of the M. sativa complex, has contributed substantially to lucerne improvement in North America, and its diverse genetics would appear to have been under-utilised in Australian programs over the last two decades, despite the reduced need for tolerance to freezing injury in Australian environments. Breeding of lucerne in Australia only commenced on a large scale in 1977, driven by an urgent need to introgress aphid resistance into adapted backgrounds. The release in the early 1980s of lucernes with multiple pest and disease resistance (aphids, Phytophthora, Colletotrichum) had a significant effect on increasing lucerne productivity and persistence in eastern Australia, with yield increases under high disease pressure of up to 300% being recorded over the predominant Australian cultivar, up to 1977, Hunter River. Since that period, irrigated lucerne yields have plateaued, highlighting the need to identify breeding objectives, technologies, and the germplasm that will create new opportunities for increasing performance. This review discusses major goals for lucerne improvement programs in Australia, and provides indications of the germplasm sources and technologies that are likely to deliver the desired outcomes.