79 resultados para Genetic and phenotypic correlation
em University of Queensland eSpace - Australia
Resumo:
Birthweight affects neonatal mortality and morbidity and has been used as a marker of foetal undernutrition in studies of prenatal effects on adult characteristics. It is potentially influenced by genetic and environmental influences on the mother, and effects of foetal genotype, which is partially derived from the maternal genotype. Interpretations of variation in birthweight and associated characteristics as being due to prenatal environment ignore other possible modes of materno-foetal transmission. Subjects were adult twins recruited through the Australian Twin Registry, aged 17 to 87 years, and the sample comprised 1820 men and 4048 women. Twins reported their own birthweight as part of a health questionnaire. Body Mass Index (BMI) was calculated from self-reports of height and weight. Correlations between co-twins' birthweights were high for both monozygotic (r = 0.77) and dizygotic (r = 0.67) pairs, leading to substantial estimates of shared environmental effects (56% of variance) with significant additive genetic (23%) and non-shared environmental (21%) components. Adult BMI was mainly influenced by genetic factors, both additive (36% of variance) and nonadditive (35%). The correlation between birthweight and BMI was positive, in that heavier babies became on average more obese adults. A bivariate model of birthweight and adult BMI showed significant positive genetic (rg = 0.16, p = 0.005) and environmental (re = 0.08, p = 0.000011) correlations. Intra-uterine environmental or perinatal influences shared by cotwins exercise a strong influence on birthweight, but the factors which affect both birthweight and adult BMI are partly genetic and partly non-shared environmental.
Resumo:
In this study, we examined genetic and environmental influences on covariation among two reading tests used in neuropsychological assessment (Cambridge Contextual Reading Test [CCRT], [Beardsall, L., and Huppert, F. A. ( 1994). J. Clin. Exp. Neuropsychol. 16: 232 - 242], Schonell Graded Word Reading Test [SGWRT], [ Schonell, F. J., and Schonell, P. E. ( 1960). Diagnostic and attainment testing. Edinburgh: Oliver and Boyd.]) and among a selection of IQ subtests from the Multidimensional Aptitude Battery (MAB), [Jackson, D. N. (1984). Multidimensional aptitude battery, Ontario: Research Psychologists Press.] and the Wechsler Adult Intelligence Scale-Revised (WAIS-R) [Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). San Antonio: The Psychological Corporation]. Participants were 225 monozygotic and 275 dizygotic twin pairs aged from 15 years to 18 years ( mean, 16 years). For Verbal IQ subtests, phenotypic correlations with the reading tests ranged from 0.44 to 0.65. For Performance IQ subtests, phenotypic correlations with the reading tests ranged from 0.23 to 0.34. Results of Structural Equation Modeling (SEM) supported a model with one genetic General factor and three genetic group factors ( Verbal, Performance, Reading). Reading performance was influenced by the genetic General factor ( accounting for 13% and 20% of the variance for the CCRT and SGWRT, respectively), the genetic Verbal factor ( explaining 17% and 19% of variance for the CCRT and SGWRT), and the genetic Reading factor ( explaining 21% of the variance for both the CCRT and SGWRT). A common environment factor accounted for 25% and 14% of the CCRT and SGWRT variance, respectively. Genetic influences accounted for more than half of the phenotypic covariance between the reading tests and each of the IQ subtests. The heritabilities of the CCRT and SGWRT were 0.54 and 0.65, respectively. Observable covariance between reading assessments used by neuropsychologists to estimate IQ and IQ subtests appears to be largely due to genetic effects.
Resumo:
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.
Resumo:
Background. Children of alcoholics are significantly more likely to experience high-risk environmental exposures, including prenatal substance exposure, and are more likely to exhibit externalizing problems [e.g. attention deficit hyperactivity disorder (ADHD)]. While there is evidence that genetic influences and prenatal nicotine and/or alcohol exposure play separate roles in determining risk of ADHD, little has been done on determining the joint roles that genetic risk associated with maternal alcohol use disorder (AUD) and prenatal risk factors play in determining risk of ADHD. Method. Using a children-of-twins design, diagnostic telephone interview data from high-risk families (female monozygotic and dizygotic twins concordant or discordant for AUD as parents) and control families targeted from a large Australian twin cohort were analyzed using logistic regression models. Results. Offspring of twins with a history of AUD, as well as offspring of non-AUD monozygotic twins whose co-twin had AUD, were significantly more likely to exhibit ADHD than offspring of controls. This pattern is consistent with a genetic explanation for the association between maternal AUD and increased offspring risk of ADHD. Adjustment for prenatal smoking, which remained significantly predictive, did not remove the significant genetic association between maternal AUD and offspring ADHD. Conclusions. While maternal smoking during pregnancy probably contributes to the association between maternal AUD and offspring ADHD risk, the evidence for a significant genetic correlation suggests: (i) pleiotropic genetic effects, with some genes that influence risk of AUD also influencing vulnerability to ADHD; or (ii) ADHD is a direct risk-factor for AUD.
Resumo:
Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
The genetic and environmental contributions to educational attainment in Australia are examined using a multiple regression model drawn from the medical research literature. Data from a large sample of Australian twins are analysed. The findings indicate that at least as much as 50 percent and perhaps as much as 65 percent of the variance in educational attainments can be attributed to genetic endowments. It is suggested that only around 25 percent of the variance in educational attainments may be due to environmental factors, though this contribution is shown to be around 40 percent when adjustments for measurement error and assortative mating are made. The high fraction of the observed variation in educational attainments due to genetic differences is consistent with results reported by Heath et al. (Heath, A.C., Berg, K., Eaves, L.J., Solaas, M.H., Corey, L.A., Sundet, J., Magnus, P., Nance, W.E., 1985. Education policy and the heritability of educational attainment. Nature 314(6013), 734-736.), Tambs et al. (Tambs, K., Sundet, J.M., Magnus, P., Berg, K., 1989. Genetic and environmental contributions to the covariance between occupational status, educational attainment and IQ: a study of twins. Behavior Genetics 19(2), 209-222.), Vogler and Fulker (Vogler, G.P., Fulker, D.W., 1983. Familial resemblance for educational attainment. Behavior Generics 13(4), 341-354.) and Behrman and Taubman (Behrman, J., Taubman, P., 1989. Is schooling mostly in the genes? Nature-nurture decomposition using data on relatives. Journal of Political Economy 97(6), 1425-1446.), suggesting that the finding is robust. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Background Progress in identifying genetic factors protective against alcohol dependence (AlcD) requires a paradigm shift in psychiatric epidemiology. Aims To integrate analysis of research into the genetics of alcoholism. Method Data from prospective questionnaire and interview surveys of the Australian twin panel, and from a subsample who underwent alcohol challenge, were analysed. Results In men, effects of alcohol dehydrogenase ADH2*1/*2 genotype or high alcohol sensitivity (risk-decreasing), and of history of childhood conduct disorder, or having monozygotic co-twin or twin sister with AlcD (risk-increasing) were significant and comparable in magnitude. Religious affiliation (Anglican versus other) was associated with the ADH2 genotype, but did not explain the associations with AlcD symptoms. No protective effect of the ADH2*1/*2 genotype was observed in women. Conclusions The early onset and strong familial aggregation of AlcD, and opportunity for within-family tests of genetic association to avoid confounding effects, make epidemiological family studies of adolescents and young adults and their families a priority.
Resumo:
The objective was to investigate the genetic epidemiology of figural stimuli. Standard figural stimuli were available from 5,325 complete twin pairs: 1,751 (32.9%) were monozygotic females, 1,068 (20.1%) were dizygotic females, 752 (14.1%) were monozygotic males, 495 (9.3%) were dizygotic males, and 1,259 (23.6%) were dizygotic male-female pairs. Univariate twin analyses were used to examine the influences on the individual variation in current body size and ideal body size. These data were analysed separately for men and women in each of five age groups. A factorial analysis of variance, with polychoric correlations between twin pairs as the dependent variable, and age, sex, zygosity, and the three interaction terms (age x sex, age x zygosity, sex x zygosity) as independent variables, was used to examine trends across the whole data set. Results showed genetic influences had the largest impact on the individual variation in current body size measures, whereas non-shared environmental influences were associated with the majority of individual variation in ideal body size. There was a significant main effect of zygosity (heritability) in predicting polychoric correlations for current body size and body dissatisfaction. There was a significant main effect of gender and zygosity in predicting ideal body size, with a gender x zygosity interaction. In common with BMI, heritability is important in influencing the estimation of current body size. Selection of desired body size for both men and women is more strongly influenced by environmental factors.
Resumo:
A shortened version of the Interpersonal Sensitivity Measure (IPSM) developed to predict depression prone personalities was administered in a self-report questionnaire to a community-based sample of 3269 Australian twin pairs aged 18-28 years, along with Eysenck's EPQ and Cloninger's TPQ. The IPSM included four sub-scales: Separation Anxiety (SEP); Interpersonal Sensitivity (INT); Fragile Inner-Self (FIS); and Timidity (TIM). Univariate analysis revealed that individual differences in the IPSM sub-scale scores were best explained by additive genetic and specific environmental effects. Confirming previous research findings, familial aggregation for the EPQ and TPQ personality dimensions was entirely due to additive genetic effects. In the multivariate case, a model comprising additive genetic and specific environmental effects best explained the covariation between the latent factors for male and female twin pairs alike. The EPQ and TPQ dimensions accounted for moderate to large proportions of the genetic variance (40-76%) in the IPSM sub-scales, while most of the non-shared environment variance was unique to the IPSM sub-scales. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objective: The aims of this study were to examine working memory in the acute-subacute phase of schizophrenia and mania and to examine correlations between working memory and specific symptom domains. Method: Visuospatial working memory and symptom profiles were assessed in three groups (schizophrenia group, n=19; mania, n=12; controls, n=19) on two occasions separated by 4 weeks. Results: Both patient groups had significant deficits on working memory compared to the well controls and the schizophrenia and mania groups were equally impaired. All groups showed equivalent improvement over time. In the patient groups, impaired working memory was significantly correlated with the presence of both negative symptoms and positive thought disorder. Conclusion: Impaired wet-king memory is found in both schizophrenia and mania during the acute-subacute phases. Further research is required in order to clarify the neurocognitive mechanisms linking impaired working memory with both negative symptoms and positive thought disorder.
Resumo:
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4 piD sigma (2) (where D is the population density and sigma (2) the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m(2)/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km(2) and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m(2)/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km(2) when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.
Resumo:
The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.