155 resultados para Genetic Contributions

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 +/- 1.9 years) and 14 matched controls (age: 71.4 +/- 0.9 years), each scanned twice (2.1 +/- 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genetic and environmental contributions to educational attainment in Australia are examined using a multiple regression model drawn from the medical research literature. Data from a large sample of Australian twins are analysed. The findings indicate that at least as much as 50 percent and perhaps as much as 65 percent of the variance in educational attainments can be attributed to genetic endowments. It is suggested that only around 25 percent of the variance in educational attainments may be due to environmental factors, though this contribution is shown to be around 40 percent when adjustments for measurement error and assortative mating are made. The high fraction of the observed variation in educational attainments due to genetic differences is consistent with results reported by Heath et al. (Heath, A.C., Berg, K., Eaves, L.J., Solaas, M.H., Corey, L.A., Sundet, J., Magnus, P., Nance, W.E., 1985. Education policy and the heritability of educational attainment. Nature 314(6013), 734-736.), Tambs et al. (Tambs, K., Sundet, J.M., Magnus, P., Berg, K., 1989. Genetic and environmental contributions to the covariance between occupational status, educational attainment and IQ: a study of twins. Behavior Genetics 19(2), 209-222.), Vogler and Fulker (Vogler, G.P., Fulker, D.W., 1983. Familial resemblance for educational attainment. Behavior Generics 13(4), 341-354.) and Behrman and Taubman (Behrman, J., Taubman, P., 1989. Is schooling mostly in the genes? Nature-nurture decomposition using data on relatives. Journal of Political Economy 97(6), 1425-1446.), suggesting that the finding is robust. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. This paper examines genetic and environmental contributions to risk of cannabis dependence. Method. Symptoms of cannabis dependence and measures of social, family and individual risk factors were assessed in a sample of 6265 young adult male and female Australian twins born 1964-1971. Results. Symptoms of cannabis dependence were common: 11(.)0% of sample (15(.)1% of men and 7(.)8% of women) reported two or more symptoms of dependence. Correlates of cannabis dependence included educational attainment, exposure to parental conflict, sexual abuse, major depression, social anxiety and childhood conduct disorder. However, even after control for the effects of these factors, there was evidence of significant genetic effects on risk of cannabis dependence. Standard genetic modelling indicated that 44(.)7% (95% CI = 15-72(.)2) of the variance in liability to cannabis dependence could be accounted for by genetic factors, 20(.)1% (95 CI = 0-43(.)6) could be attributed to shared environment factors and 35(.)3% (95% CI = 26(.)4-45(.)7) could be attributed to non-shared environmental factors. However, while there was no evidence of significant gender differences in the magnitude of genetic and environmental influences, a model which assumed both genetic and shared environmental influences on risks of cannabis dependence among men and shared environmental but no genetic influences among women provided an equally good fit to the data. Conclusions. There was consistent evidence that genetic risk factors are important determinants of risk of cannabis dependence among men. However, it remains uncertain whether there are genetic influences on liability to cannabis dependence among women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crop modelling has evolved over the last 30 or so years in concert with advances in crop physiology, crop ecology and computing technology. Having reached a respectable degree of acceptance, it is appropriate to review briefly the course of developments in crop modelling and to project what might be major contributions of crop modelling in the future. Two major opportunities are envisioned for increased modelling activity in the future. One opportunity is in a continuing central, heuristic role to support scientific investigation, to facilitate decision making by crop managers, and to aid in education. Heuristic activities will also extend to the broader system-level issues of environmental and ecological aspects of crop production. The second opportunity is projected as a prime contributor in understanding and advancing the genetic regulation of plant performance and plant improvement. Physiological dissection and modelling of traits provides an avenue by which crop modelling could contribute to enhancing integration of molecular genetic technologies in crop improvement. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consensus from published studies is that plasma lipids are each influenced by genetic factors, and that this contributes to genetic variation in risk of cardiovascular disease. Heritability estimates for lipids and lipoproteins are in the range .48 to .87, when measured once per study participant. However, this ignores the confounding effects of biological variation measurement error and ageing, and a truer assessment of genetic effects on cardiovascular risk may be obtained from analysis of longitudinal twin or family data. We have analyzed information on plasma high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, and triglycerides, from 415 adult twins who provided blood on two to five occasions over 10 to 17 years. Multivariate modeling of genetic and environmental contributions to variation within and across occasions was used to assess the extent to which genetic and environmental factors have long-term effects on plasma lipids. Results indicated that more than one genetic factor influenced HDL and LDL components of cholesterol, and triglycerides over time in all studies. Nonshared environmental factors did not have significant long-term effects except for HDL. We conclude that when heritability of lipid risk factors is estimated on only one occasion, the existence of biological variation and measurement errors leads to underestimation of the importance of genetic factors as a cause of variation in long-term risk within the population. In addition our data suggest that different genes may affect the risk profile at different ages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Considerable evidence from twin and adoption studies indicates that genetic and shared environmental factors play a significant role in the initiation of smoking behavior. Although twin and adoption designs are powerful to detect genetic and environmental influences, they do not provide information on the processes of assortative mating and parent–offspring transmission and their contribution to the variability explained by genetic and/or environmental factors. Methods We examined the role of genetic and environmental factors for smoking initiation using an extended kinship design. This design allows the simultaneous testing of additive and non-additive genetic, shared and individual-specific environmental factors, as well as sex differences in the expression of genes and environment in the presence of assortative mating and combined genetic and cultural transmission. A dichotomous lifetime smoking measure was obtained from twins and relatives in the Virginia 30,000 sample. Results Results demonstrate that both genetic and environmental factors play a significant role in the liability to smoking initiation. Major influences on individual differences appeared to be additive genetic and unique environmental effects, with smaller contributions from assortative mating, shared sibling environment, twin environment, cultural transmission and resulting genotype–environment covariance. The finding of negative cultural transmission without dominance led us to investigate more closely two possible mechanisms for the lower parent–offspring correlations compared to the sibling and DZ twin correlations in subsets of the data: (i) age × gene interaction, and (ii) social homogamy. Neither mechanism provided a significantly better explanation of the data, although age regression was significant. Conclusions This study showed significant heritability, partly due to assortment, and significant effects of primarily non-parental shared environment on smoking initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine individuals with complex language deficits following left-hemisphere cortical lesions and a matched control group (n 5 9) performed speeded lexical decisions on the third word of auditory word triplets containing a lexical ambiguity. The critical conditions were concordant (e.g., coin–bank–money), discordant (e.g., river–bank–money), neutral (e.g., day–bank– money), and unrelated (e.g., river–day–money). Triplets were presented with an interstimulus interval (ISI) of 100 and 1250 ms. Overall, the left-hemisphere-damaged subjects appeared able to exhaustively access meanings for lexical ambiguities rapidly, but were unable to reduce the level of activation for contextually inappropriate meanings at both short and long ISIs, unlike control subjects. These findings are consistent with a disruption of the proposed role of the left hemisphere in selecting and suppressing meanings via contextual integration and a sparing of the right-hemisphere mechanisms responsible for maintaining alternative meanings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the construction of a physical and genetic map of the virulent Wolbachia strain, wMelPop. This map was determined by ordering 28 chromosome fragments that resulted from digestion with the restriction endonucleases FseI, ApaI, SmaI, and AscI and were resolved by pulsed-field gel electrophoresis. Southern hybridization was done with 53 Wolbachia-specific genes as probes in order to determine the relative positions of these restriction fragments and use them to serve as markers. Comparison of the resulting map with the whole genome sequence of the closely related benign Wolbachia strain, wMel, shows that the two genomes are largely conserved in gene organization with the exception of a single inversion in the chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.