179 resultados para Generalized inverse Gaussian distribution
em University of Queensland eSpace - Australia
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
The generalized secant hyperbolic distribution (GSHD) proposed in Vaughan (2002) includes a wide range of unimodal symmetric distributions, with the Cauchy and uniform distributions being the limiting cases, and the logistic and hyperbolic secant distributions being special cases. The current article derives an asymptotically efficient rank estimator of the location parameter of the GSHD and suggests the corresponding one- and two-sample optimal rank tests. The rank estimator derived is compared to the modified MLE of location proposed in Vaughan (2002). By combining these two estimators, a computationally attractive method for constructing an exact confidence interval of the location parameter is developed. The statistical procedures introduced in the current article are illustrated by examples.
Resumo:
Predicted area under curve (AUC), mean transit time (MTT) and normalized variance (CV2) data have been compared for parent compound and generated metabolite following an impulse input into the liver, Models studied were the well-stirred (tank) model, tube model, a distributed tube model, dispersion model (Danckwerts and mixed boundary conditions) and tanks-in-series model. It is well known that discrimination between models for a parent solute is greatest when the parent solute is highly extracted by the liver. With the metabolite, greatest model differences for MTT and CV2 occur when parent solute is poorly extracted. In all cases the predictions of the distributed tube, dispersion, and tasks-in-series models are between the predictions of the rank and tube models. The dispersion model with mixed boundary conditions yields identical predictions to those for the distributed tube model (assuming an inverse gaussian distribution of tube transit times). The dispersion model with Danckwerts boundary conditions and the tanks-in series models give similar predictions to the dispersion (mixed boundary conditions) and the distributed tube. The normalized variance for parent compound is dependent upon hepatocyte permeability only within a distinct range of permeability values. This range is similar for each model but the order of magnitude predicted for normalized variance is model dependent. Only for a one-compartment system is the MIT for generated metabolite equal to the sum of MTTs for the parent compound and preformed metabolite administered as parent.
Resumo:
The dispersion model with mixed boundary conditions uses a single parameter, the dispersion number, to describe the hepatic elimination of xenobiotics and endogenous substances. An implicit a priori assumption of the model is that the transit time density of intravascular indicators is approximated by an inverse Gaussian distribution. This approximation is limited in that the model poorly describes the tail part of the hepatic outflow curves of vascular indicators. A sum of two inverse Gaussian functions is proposed as ail alternative, more flexible empirical model for transit time densities of vascular references. This model suggests that a more accurate description of the tail portion of vascular reference curves yields an elimination rate constant (or intrinsic clearance) which is 40% less than predicted by the dispersion model with mixed boundary conditions. The results emphasize the need to accurately describe outflow curves in using them as a basis for determining pharmacokinetic parameters using hepatic elimination models. (C) 1997 Society for Mathematical Biology.
Resumo:
The conventional convection-dispersion model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. The extension of this model to include nonlinear kinetics and zonal heterogeneity of the liver is not straightforward and requires numerical solution of partial differential equation, which is not available in standard nonlinear regression analysis software. In this paper, we describe an alternative compartmental model representation of hepatic disposition (including elimination). The model allows the use of standard software for data analysis and accurately describes the outflow concentration-time profile for a vascular marker after bolus injection into the liver. In an evaluation of a number of different compartmental models, the most accurate model required eight vascular compartments, two of them with back mixing. In addition, the model includes two adjacent secondary vascular compartments to describe the tail section of the concentration-time profile for a reference marker. The model has the added flexibility of being easy to modify to model various enzyme distributions and nonlinear elimination. Model predictions of F, MTT, CV2, and concentration-time profile as well as parameter estimates for experimental data of an eliminated solute (palmitate) are comparable to those for the extended convection-dispersion model.
Resumo:
Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
Aims We have characterized the relative dispersion of vascular and extravascular markers in the limbs of three patients undergoing isolated limb perfusions with the cytotoxic melphalan for recurrent malignant melanoma both before and after melphalan dosing. Methods A bolus of injectate containing [Cr-51] labelled red blood cells, [C-14]-sucrose and [H-3]-water was injected into an iliac or femoral artery and outflow samples collected at 1 s intervals by a fraction collector. The radioactivity due to each isotype was analysed by either gamma [Cr-51] or beta [C-14 and H-3] counting. The moments of the outflow fraction-time profiles were estimated by a nonparametric (numerical integration) method and a parametric model (sum of two inverse Gaussian functions). Results The availability, mean transit time and normalised variance (CV2) obtained for labelled red blood cells, sucrose and water were similar before and after melphalan dosing and with the two methods of calculation but varied between the patients. Conclusions The vascular space is not well-stirred but characterized by a CV2 similar that reported previously for in situ rat hind limb and rat liver perfusions. A flow-limited blood-tissue exchange was observed for the permeating indicators. Administration of melphalan did not influence the distribution characteristics of the indicators.
Resumo:
Synthetic aperture radar (SAR) images of resonant buried objects are modelled in the presence of ground surface clutter. The method of moments (MoM) is used to model scattered fields from a resonant buried conductor and clutter is modelled as a bivariant Gaussian distribution. A diffraction stack SAR imaging technique is applied to the ultra-wideband waveforms to give a bipolar signal image. A number of examples have been computed to illustrate the combined effects of SAR processing with resonant targets and clutter. SAR images of different targets show differences which may facilitate target identification. To maximise the peak signal-to-clutter ratio, an image correlation technique is applied and the results are shown.
Resumo:
The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution P-t(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t)similar tot, unlike the classical random walk for which sigma(t)similar toroott. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be Tsimilar toalpha(-2), where alpha is the standard deviation of the noise.
Resumo:
This paper presents some initial attempts to mathematically model the dynamics of a continuous estimation of distribution algorithm (EDA) based on a Gaussian distribution and truncation selection. Case studies are conducted on both unimodal and multimodal problems to highlight the effectiveness of the proposed technique and explore some important properties of the EDA. With some general assumptions, we show that, for ID unimodal problems and with the (mu, lambda) scheme: (1). The behaviour of the EDA is dependent only on the general shape of the test function, rather than its specific form; (2). When initialized far from the global optimum, the EDA has a tendency to converge prematurely; (3). Given a certain selection pressure, there is a unique value for the proposed amplification parameter that could help the EDA achieve desirable performance; for ID multimodal problems: (1). The EDA could get stuck with the (mu, lambda) scheme; (2). The EDA will never get stuck with the (mu, lambda) scheme.
Resumo:
Calculating the potentials on the heart’s epicardial surface from the body surface potentials constitutes one form of inverse problems in electrocardiography (ECG). Since these problems are ill-posed, one approach is to use zero-order Tikhonov regularization, where the squared norms of both the residual and the solution are minimized, with a relative weight determined by the regularization parameter. In this paper, we used three different methods to choose the regularization parameter in the inverse solutions of ECG. The three methods include the L-curve, the generalized cross validation (GCV) and the discrepancy principle (DP). Among them, the GCV method has received less attention in solutions to ECG inverse problems than the other methods. Since the DP approach needs knowledge of norm of noises, we used a model function to estimate the noise. The performance of various methods was compared using a concentric sphere model and a real geometry heart-torso model with a distribution of current dipoles placed inside the heart model as the source. Gaussian measurement noises were added to the body surface potentials. The results show that the three methods all produce good inverse solutions with little noise; but, as the noise increases, the DP approach produces better results than the L-curve and GCV methods, particularly in the real geometry model. Both the GCV and L-curve methods perform well in low to medium noise situations.
Resumo:
There are two main types of data sources of income distributions in China: household survey data and grouped data. Household survey data are typically available for isolated years and individual provinces. In comparison, aggregate or grouped data are typically available more frequently and usually have national coverage. In principle, grouped data allow investigation of the change of inequality over longer, continuous periods of time, and the identification of patterns of inequality across broader regions. Nevertheless, a major limitation of grouped data is that only mean (average) income and income shares of quintile or decile groups of the population are reported. Directly using grouped data reported in this format is equivalent to assuming that all individuals in a quintile or decile group have the same income. This potentially distorts the estimate of inequality within each region. The aim of this paper is to apply an improved econometric method designed to use grouped data to study income inequality in China. A generalized beta distribution is employed to model income inequality in China at various levels and periods of time. The generalized beta distribution is more general and flexible than the lognormal distribution that has been used in past research, and also relaxes the assumption of a uniform distribution of income within quintile and decile groups of populations. The paper studies the nature and extent of inequality in rural and urban China over the period 1978 to 2002. Income inequality in the whole of China is then modeled using a mixture of province-specific distributions. The estimated results are used to study the trends in national inequality, and to discuss the empirical findings in the light of economic reforms, regional policies, and globalization of the Chinese economy.