109 resultados para Gene Flow

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of population subdivision and the relationship between gene flow and geographical distance in the tropical estuarine fish Lares calcarifer (Centropomidae) were investigated using mtDNA control region sequences. Sixty-three putative haplotypes were resolved from a total of 270 individuals from nine localities within three geographical regions spanning the north Australian coastline. Despite a continuous estuarine distribution throughout the sampled range, no haplotypes were shared among regions. However, within regions, common haplotypes were often shared among localities. Both sequence-based (average Phi(ST)=0.328) and haplotype-based (average Phi(ST)=0.182) population subdivision analyses indicated strong geographical structuring. Depending on the method of calculation, geographical distance explained either 79 per cent (sequence-based) or 23 per cent (haplotype-based) of the variation in mitochondrial gene flow. Such relationships suggest that genetic differentiation of L. calcarifer has been generated via isolation-by-distance, possibly in a stepping-stone fashion. This pattern of genetic structure is concordant with expectations based on the life history of L. calcarifer and direct studies of its dispersal patterns. Mitochondrial DNA variation, although generally in agreement with patterns of allozyme variation, detected population subdivision at smaller spatial scales. Our analysis of mtDNA variation in L. calcarifer confirms that population genetic models can detect population structure of not only evolutionary significance but also of demographic significance. Further, it demonstrates the power of inferring such structure from hypervariable markers, which correspond to small effective population sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in molecular biology have made it possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. Here we use faeces as a source of DNA and mtDNA sequence data to elucidate the relationship among Spanish and Moroccan populations of great bustards. 834 bp of combined control region and cytochrome-b mtDNA fragments revealed four variable sites that defined seven closely related haplotypes in 54 individuals. Morocco was fixed for a single mtDNA haplotype that occurs at moderate frequency (28%) in Spain. We could not differentiate among the sampled Spanish populations of Caceres and Andalucia but these combined populations were differentiated from the Moroccan population. Estimates of gene flow (Nm = 0.82) are consistent with extensive observations on the southern Iberian peninsular indicating that few individuals fly across the Strait of Gibraltar. We demonstrate that both this sea barrier and mountain barriers in Spain limit dispersal among adjacent great bustard populations to a similar extent. The Moroccan population is of high ornithological significance as it holds the only population of great bustards in Africa. This population is critically small and genetic and observational data indicate that it is unlikely to be recolonised via immigration from Spain should it be extirpated. In light of the evidence presented here it deserves the maximum level of protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycosphaerello musicolo causes Sigatoka disease of banana and is endemic to Australia. The population genetic structure of M. musicola in Australia was examined by applying single-copy restriction fragment length polymorphism probes to hierarchically sampled populations collected along the Australian cast coast. The 363 isolates studied were from 16 plantations at 12 sites in four different regions, and comprised 11 populations. These populations displayed moderate levels of gene diversity (H = 0.142 to 0.369) and similar levels of genotypic richness and evenness. Populations were dominated by unique genotypes, but isolates sharing the same genotype (putative clones) were detected. Genotype distribution was highly localized within each population, and the majority of putative clones were detected for isolates sampled from different sporodochia in the same lesion or different lesions on a plant. Multilocus gametic disequilibrium tests provided further evidence of a degree of clonality within the populations at the plant scale. A complex pattern of population differentiation was detected for M. musicola in Australia. Populations sampled from plantations outside the two major production areas were genetically very different to all other populations. Differentiation was much lower between populations of the two major production areas, despite their geographic separation of over 1,000 km. These results suggest low gene flow at the continental scale due to limited spore dispersal and the movement of infected plant material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both large and small scale migrations of Helicoverpa armigera Hübner in Australia were investigated using AMOVA analysis and genetic assignment tests. Five microsatellite loci were screened across 3142 individuals from 16 localities in eight major cotton and grain growing regions within Australia, over a 38-month period (November 1999 to January 2003). From November 1999 to March 2001 relatively low levels of migration were characterized between growing regions. Substantially higher than average gene-flow rates and limited differentiation between cropping regions characterized the period from April 2001 to March 2002. A reduced migration rate in the year from April 2002 to March 2003 resulted in significant genetic structuring between cropping regions. This differentiation was established within two or three generations. Genetic drift alone is unlikely to drive genetic differentiation over such a small number of generations, unless it is accompanied by extreme bottlenecks and/or selection. Helicoverpa armigera in Australia demonstrated isolation by distance, so immigration into cropping regions is more likely to come from nearby regions than from afar. This effect was most pronounced in years with limited migration. However, there is evidence of long distance dispersal events in periods of high migration (April 2001-March 2002). The implications of highly variable migration patterns for resistance management are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The population dynamics of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) in the Murrumbidgee Valley, Australia, has been characterized using five highly variable microsatellite loci. In the 2001-2002 growing season, there were very high levels of migration into the Murrumbidgee Valley with no detectable genetic structuring, consistent with previous analyses on a national scale. By contrast, there was significant genetic structuring over the 2002-2003 growing season, with three distinct genetic types detected. The first type corresponded to the first two generations and was derived from local individuals emerging from diapause and their progeny. The second genetic type corresponded to generation 3 and resulted from substantial immigration into the region. There was another genetic shift in generation 4, which accounts for the third genetic type of the season. This genetic shift occurred despite low levels of immigration. During the third generation of the 2002-2003 growing season, different population dynamics was characterized for H. armigera on maize, Zea mays L., and cotton Gossipium hirsutum L. Populations on cotton tended to cycle independently with very little immigration from outside the region or from maize within the region. Maize acted as a major sink for immigrants from cotton and from outside the region. If resistance were to develop on cotton under these circumstances, susceptible individuals from maize or from other regions would not dilute this resistance. In addition, resistance is likely to be transferred to maize and be perpetuated until diapause, from where it may reemerge next season. If low levels of immigration were to occur on transgenic cotton, this may undermine the effectiveness of refugia, especially noncotton refugia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many endangered species worldwide are found in remnant populations, often within fragmented landscapes. However, when possible, an understanding of the natural extent of population structure and dispersal behaviour of threatened species would assist in their conservation and management. The brush-tailed rock-wallaby (Petrogale penicillata), a once abundant and widespread rock-wallaby species across southeastern Australia, has become nearly extinct across much of the southern part of its range. However, the northern part of the species' range still sustains many small colonies closely distributed across suitable habitat, providing a rare opportunity to investigate the natural population dynamics of a listed threatened species. We used 12 microsatellite markers to investigate genetic diversity, population structure and gene flow among brush-tailed rock-wallaby colonies within and among two valley regions with continuous habitat in southeast Queensland. We documented high and signifcant levels of population genetic structure between rock-wallaby colonies embedded in continuous escarpment habitat and forest. We found a strong and significant pattern of isolation-by-distance among colonies indicating restricted gene flow over a small geographic scale (< 10 km) and conclude that gene flow is more likely limited by intrinsic factors rather than environmental factors. In addition, we provide evidence that genetic diversity was significantly lower in colonies located in a more isolated valley region compared to colonies located in a valley region surrounded by continuous habitat. These findings shed light on the processes that have resulted in the endangered status of rock-wallaby species in Australia and they have strong implications for the conservation and management of both the remaining 'connected' brush-tailed rock-wallaby colonies in the northern parts of the species' range and the remnant endangered populations in the south.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA phi(ST) = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT phi(ST) = 0.39, URST = 0.02; NQ phi(ST) = 0.60, URST = -0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should affect multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja, California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limits gene exchange between biogeographic regions and helps maintain evidence of past vicariance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Indo-West Pacific is characterized by extraordinary marine species diversity. The evolutionary mechanisms responsible for generating this diversity remain puzzling, but are often linked to Pleistocene sea level fluctuations. The impact of these sea level changes on the population genetic architecture of the estuarine fish Lates calcarifer are investigated via a natural experiment in a region of the Indo-West Pacific known to have undergone considerable change during the Pleistocene. L. calcarifer, a coastline-restricted catadromous teleost, provides an excellent model for studying the effects of sea level change as its habitat requirements potentially make it sensitive to the region's physical history. Evidence was found for a large phylogenetic break (4% mtDNA control region; 0.47% ATPase 6 and 8) either side of the Torres Strait, which separates the Western Pacific and Indian Oceans, although some mixing of the clades was evident. This suggests clinal secondary introgression of the clades via contemporary gene flow. Further, populations on Australia's east coast appear to have passed through a bottleneck. This was linked to the historical drying of the Great Barrier Reef coastal lagoon, which resulted in a significant loss of habitat and forced retreat into isolated refugia. These results suggest that historical eustatic changes have left a significant imprint on the molecular diversity within marine species as well as among them in the Indo-West Pacific.