24 resultados para Gen BCHE
em University of Queensland eSpace - Australia
Resumo:
Analysis of the 16S rDNA sequences of species currently assigned to the genus Herpetosiphon revealed intrageneric phylogenetic heterogeneity. The thermotolerant freshwater species Herpetosiphon geysericola is most closely related to the type species Herpetosiphon aurantiacus in the Chloroflexus Subdivision of the green non-sulfur bacteria, The marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus, on the other hand, were found to form a cluster with the sheathed bacterium Haliscomenobacter hydrossis in the Saprospira group of the Flexibacter-Bacteroides-Cytophaga (FBC) phylum. A proposal is made to transfer these marine species to the genus Lewinella gen. nov. as Lewinella cohaerens comb, nov., Lewinella nigricans comb. nov, and Lewinella persica comb. nov. The marine sheathed gliding bacterium Flexithrix dorotheae was also found to be a member of the FBC phylum but on a separate phylogenetic line to the marine herpetosiphons now assigned to the genus Lewinella.
Resumo:
As a consequence of the transfer of the type species Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, the name of the genus Conglomeromonas must be changed in accordance with Rule 37a(1) of the International Code of Nomenclature of Bacteria. Consequently, it is proposed that the subspecies Conglomeromonas largomobilis subsp, parooensis be transferred to the genus Skermanella gen, nov. as the type species Skermanella parooensis gen, nov., sp, nov. This taxon belongs to an isolated subline of descent in the Azospirillum branch of the alpha-Proteobacteria. The spelling of the specific epithet of Azospirillum largomobile is corrected to Azospirillum largimobile.
Resumo:
The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb, nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668(T), are presented.
Resumo:
The new acanthocolpid genus Venusicola is erected for V. inusitatus sp, n. from the marine tuskfish Choerodon venustus from Heron Island on the southern Great Barrier Reef. This genus is unique in the family in having a greatly elongated ventral sucker with lateral apertural lips and a pavement of blunt spines lining the aperture.
Resumo:
The budding bacterium Blastobacter natatorius belongs to the alpha-4 group of the Proteobacteria and clusters phylogenetically on a deep branch with Sphingomonas capsulata, with which it shares 93.9% 16S rRNA sequence similarity. On phylogenetic, phenotypic, and chemotaxonomic grounds a proposal is made to transfer B. natatorius to the genus Blastomonas gen, nov. as Blastomonas natatoria comb, nov.
Resumo:
Notopronocephalus peekayi gen, et sp, n. is described from the intestine of Elseya latisternum Gray, 1867, E. dentata (Gray, 1863) and Emydura signata Ahl, 1932 from rivers in Queensland. The new genus is distinguished by the absence of ventral glands, simple (neither diverticulate nor sinuous) caeca terminating at the anterior margin of the testes, excretory arms not uniting in forebody, single ovary, two opposite testes close to the posterior end of the body, intracaecal genital pore, vitelline follicles anterior to the testes, cirrus-sac orientated obliquely and not divided into two portions, and the uterus intracaecal. This is the first pronocephalid to be described from an Australian freshwater turtle and the first from the family Chelidae.
Resumo:
A new genus, Weketrema, is erected in the family Lecithasteridae for the species hitherto known as Lecithophyllum hawniiense. Weket, ema hawaiiense (Yamaguti, 1970) comb, n. is redescribed from Scolopsis bilineatus (Bloch) (Perciformes: Nemipteridae) from Lizard Island and Heron Island, Queensland, Plectorhinchus gibbosus (Lacepede) (Perciformes: Haemulidae) from Heron Island and Cheilodactylus nigripes Richardson (Perciformes: Cheilodactylidae) and Latridopsis forsteri (Castelnau) (Perciformes: Latridae) from Stanley, northern Tasmania. The new genus is distinguished from related members of the family Lecithasteridae by its complete lack of a sinus-sac. Although placed in the subfamily Lecithasterinae pro tem, its true subfamily position is not entirely clear. Comment is made on its unusual distribution, both in terms of zoogeography and hosts.
Resumo:
A new macropodiniid ciliate genus, Megavestibulum, is described which is endocommensal in the stomach of macropodid marsupials. Two new species, M. morganorum and M. kuhri, are described from Macropus dorsalis and Wallabia, bicolor respectively. Megavestibulum is holotrichous, the somatic ciliation arranged into meridional, curving kineties between broad ridges. The interkinetal ridges are lined apically by thick-walled vacuoles similar to those lining the longitudinal grooves of Macropodinium. The conical vestibulum is apical and very large, occupying up to 1/3 of the cell volume. The vestibular lip appears closable and has a cleft which may allow distention of the vestibullum to ingest large food items. The vestibular ultrastructure is similar to that of Macropodinium including the presence of vestibular vacuoles and the hemispherical differentiation of the distribution of small nematodesmata. Many specimens contained ingested whole ciliates of the genera Amylovorax and Polycosta. The structure of the vestibulum suggests that Megavestibulum is adapted for life as an active predator of other stomach ciliates as well as sweeping in small particulates. The morphology of Megavestibulum suggests that it represents the plesiomorphic body plan within the family Macropodiniidae.
Resumo:
A new genus of amylovoracid ciliates, Bandia gen.nov., is described. They are endosymbiotic/endocommensal in the stomachs of macropodid marsupials. Six new species, B. beveridgei, B. equimontanensis, B. tammar, B. deveneyi, B. cribbi and B. smalesae, are described from Setonix brachyurus, Petrogale assimilis, Macropus eugenii, M. robustus, M. parryi and M. agilis respectively. The gross morphology of Bandia is similar to that of Bitricha, with holotrichous somatic ciliation in two fields, longitudinal dorsal and oblique ventral. The somatic kineties are arranged in groups between non-ciliated. major interkinetal ridges; the groups of kineties thus give the cell a banded appearance. Several species are bimorphic, one form holotrichous and the other with a glabrous right body groove which appears to be derived from an ingrowth of one of the major interkinetal ridges. The groove may function in attachment either in sequestration or conjugation. The ultrastructure of the somatic kineties and the oral structures is similar to that of Amylovorax. Bandia also has unique ultrastructural features associated with the major interkinetal ridges, right body groove and a karyophore. Morphological evolution within the Amylovoracidae may have proceeded from simple forms such as Amylovorax via a process of cellular torsion and/or oral migration to forms similar to Bitricha and by further torsion and cellular elaboration to Bandia.
Resumo:
A new family, Polycostidae, containing one new genus, Polycosta, of ciliates endwocommensal in the stomachs of macropodid marsupials is described. Four new species, A roundi, P. turniae, A sebastopolensis and P. parma are described from Wallabia bicolor, Macropus dorsalis, Petrogale herberti and M. eugenii, respectively. Polycosta is holotrichous with slightly spiral meridional kineties arranged between broad interkinetal ridges. The ultrastructure of one representative species displays the knitted together pattern of postciliary microtubules and kinetodesmata of somatic kinetids common in trichostomes and the interkinetal ridges are dominated by layers of dark bodies but lack ectoplasmic hydrogenosomes. The vestibulum is conical and its aperture appears capable of closing tightly in most species; vesibular kineties are continuations of the right somatic kineties into the vestibulum. There is a prominent phago-plasm delimited internally by a basket of nematodesmata derived from electron dense plates at the bases of kinetosomes the anterior somatic and vestibular kineties. There is a prominent cytoproct which is situated within an invagination of the cell in some species. Polycosta is similar to Amylovorax in terms of gross morphology, somatic ciliature and cortical ultrastructure. The vestibular ultrastructure, however, is more similar to that of Macropodinium. The affinities of the group are thus not clear and this unique combination of characters supports the erection of a new family.
Resumo:
Here we describe the first Species of sanguinicolid blood fluke (Trematoda: Digenea) from a polynemid fish. Chaulioleptos haywardi n. gen., n. sp. is described from Filimanus heptadacryla Cuvier, 1829 (Perciformes: Polynemidae), the sevenfinger threadfin from Sandgate, Moreton Bay (southeast Queensland, Australia). Chaidioleptos haywardi differs from existing sanguinicolid genera in the combined possession of the following 7 characters: 2 testes, an entirely postovarian uterus, a uterine chamber, separate genital pores, an H-shaped intestine with abbreviated anterior caeca, tegumental spines in incomplete ventromarginal transverse rows that are continuous along the length of the body, and vitelline follicles that are tightly compacted and subsequently appear to form a solid branching mass occupying the area anterior to intestinal bifurcation and extending posteriorly to the level of the posterior margin of the anterior testis. Chaulioleptos haywardi is most closely related to Paracardicola Martin, 1960 and Adelomyllos Nolan and Cribb, 2004.
Resumo:
A survey of Pacific coral reef fishes for sanguinicolids revealed that two species of Lutjanidae (Lutjanus argentimaculatus, L. bohar), six species of Siganidae (Siganus corallinus, S. fuscescens, S. lineatus, S. margaritiferus, S. punctatus, S. vulpinus), seven species of Chaetodontidae (Chaetodon aureofasciatus, C. citrinellus, C. flavirostris, C. lineolatus, C. reticulatus, C. ulietensis, C. unimaculatus), three species of Scombridae (Euthynnus affinis, Scomberomorus commerson, S. munroi) and three species of Scaridae (Chlorurus microrhinos, Scarus frenatus, S. ghobban) were infected with morphologically similar sanguinicolids. These flukes have a flat elliptical body, a vestigial oral sucker, a single testis, separate genital pores and a post-ovarian uterus. However, these species clearly belong in two genera based on the position of the testis and genital pores. Sanguinicolids from Lutjanidae, Siganidae, Chaetodontidae and Scombridae belong in Cardicola Short, 1953; the testis originates anteriorly to, or at the anterior end of, the intercaecal field and does not extend posteriorly to it, the male genital pore opens laterally to the sinistral lateral nerve chord and the female pore opens near the level of the ootype ( may be anterior, lateral or posterior to it) antero-dextral to the male pore. Those from Scaridae are placed in a new genus, Braya; the testis originates near the posterior end of the intercaecal field and extends posteriorly to it, the male pore opens medially at the posterior end of the body and the female pore opens posterior to the ootype, antero-sinistral to the male pore. The second internal transcribed spacer (ITS2) of ribosomal DNA from these sanguinicolids and a known species, Cardicola forsteri Cribb, Daintith & Munday, 2000, were sequenced, aligned and analysed to test the distinctness of the putative new species. Results from morphological comparisons and molecular analyses suggest the presence of 18 putative species; 11 are described on the basis of combined morphological and molecular data and seven are not because they are characterised solely by molecular sequences or to few morphological specimens (n= one). There was usually a correlation between levels of morphological and genetic distinction in that pairs of species with the greatest genetic separation were also the least morphologically similar. The exception in this regard was the combination of Cardicola tantabiddii n. sp. from S. fuscescens from Ningaloo Reef ( Western Australia) and Cardicola sp. 2 from the same host from Heron Island ( Great Barrier Reef). These two parasite/ host/location combinations had identical ITS2 sequences but appeared to differ morphologically ( however, this could simply be due to a lack of morphological material for Cardicola sp. 2). Only one putative species ( Cardicola sp. 1) was found in more than one location; most host species harboured distinct species in each geographical location surveyed ( for example, S. corallinus from Heron and Lizard Islands) and some ( for example, S. punctatus, S. fuscescens and Chlorurus microrhinos) harboured two species at a single location. Distance analysis of ITS2 showed that nine species from siganids, three from scombrids and five from scarids formed monophyletic clades to the exclusion of sanguinicolids from the other host families. Cardicola milleri n. sp. and C. chaetodontis Yamaguti, 1970 from lutjanids and chaetodontids, respectively, were the only representatives from those families that were sequenced. Within the clade formed by sanguinicolids from Siganidae there wasa further division of species; species from the morphologically similar S. fuscescens and S. margaritiferus formed a monophyletic group to the exclusion of sanguinicolids from all other siganid species.
Resumo:
An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation, Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426(T), 89(.)8% sequence similarity). In pure culture, the cells (1(.)5-2(.)0 mu m) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 degrees C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C-18: 1 omega 7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C-19: 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G + C content of the DNA is 42(.)9 mol% (for strain Gr1(T)). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1(T) and Gr10; 97(.)7 % identical) showed 71(.)5 % DNA-DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1(T) (=DSM 15528(T) =ATCC BAA-740(T)).