6 resultados para Gataker, Charles, 1614 or 15-1680.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Childhood pneumonia has been reported to be associated with the development of bronchiectasis but there are no case-control studies that have examined this. This study examined the relationship between hospital admission for episode(s) of pneumonia and the risk of radiologically proven bronchiectasis. Methods: A medical record-based case-control study of bronchiectasis in Indigenous children was conducted in Central Australia. Controls (183), matched to cases (61) by gender, age and year of diagnosis, were Indigenous children hospitalized with other conditions. Results: There was a strong association between a history of hospitalized pneumonia and bronchiectasis [odds ratio (OR), 15.2; 95% confidence interval (95% CI) 4.4-52.7]. This was particularly evident in recurrent hospitalized pneumonia (P for trend < 0.01), severe pneumonia episodes with longer hospital stay (P for trend < 0.01), presence of atelectasis (OR 11.9; 95% CI 3.1-45.9) and requirement for oxygen (P for trend < 0.01). The overall number of pneumonia episodes, rather than its site, was associated with bronchiectasis. Although the total number of pneumonia episodes in the first year of life did not increase the risk of bronchiectasis, more severe episodes early in life did. Malnutrition, premature birth and being small for gestational age were more common findings among cases. Breast-feeding appeared to be a protective factor (OR 0.2; 95% CI 0.1-0.7). Conclusions: Although we cannot fully answer the question of why bronchiectasis is much more common in Indigenous children, we have provided strong evidence of an association between bronchiectasis and severe and recurrent pneumonia episodes in infancy and childhood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-way N transfers mediated by Pisolithus sp. were examined by excluding root contact and supplying (NH4+)-N-15 or (NO3-)-N-15 to 6-month-old Eucalyptus maculata or Casuarina cunninghamiana grown in two-chambered-pots separated by 37 m screens. Mycorrhizal colonization was 35% in Eucalyptus and 66% in Casuarina (c. 29% N-2-fixation). Using an environmental scanning electron microscope, living hyphae were observed to interconnect Eucalyptus and Casuarina. Biomass and N accumulation was greatest in nodulated mycorrhizal Casuarina/mycorrhizal Eucalyptus pairs, less in nonnodulated mycorrhizal Casuarina/mycorrhizal Eucalyptus pairs, and least in nonnodulated nonmycorrhizal Casuarina/nonmycorrhizal Eucalyptus pairs. In nonnodulated mycorrhizal pairs, N transfers to Eucalyptus or to Casuarina were similar (2.4-4.1 mg per plant in either direction) and were 2.6-4.0 times greater than in nonnodulated nonmycorrhizal pairs. In nodulated mycorrhizal pairs, N transfers were greater to Eucalyptus (5-7 times) and to Casuarina (12-18 times) than in nonnodulated mycorrhizal pairs. Net transfer to Eucalyptus or to Casuarina was low in both nonnodulated nonmycorrhizal (< 0.7 mg per plant) and nonnodulated mycorrhizal pairs (< 1.1 mg per plant). In nodulated mycorrhizal pairs, net transfer to Casuarina was 26.0 mg per plant. The amount and direction of two-way mycorrhiza-mediated N transfer was increased by the presence of Pisolithus sp. and Frankia, resulting in a net N transfer from low-N-demanding Eucalyptus to high-N-demanding Casuarina.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as (NH4NO3)-N-15-N-14 or (NH4NO3)-N-14-N-15 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N-2 fixation supplied 38% of the N in Casuarina. Biomass, N and N-15 contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as (NH4+)-N-15 than (NO3-)-N-15. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either N-15 source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of N-15 source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with (NH4+)-N-15 than with (NO3-)-N-15. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N-2-fixing to an N-2-fixing plant may reflect the very high N demand of N-2-fixing species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The objective of this study was to investigate changes in body weight, BMI, body composition, and fat distribution among freshman women during their 1st year of college. Research Methods and Procedures: Freshman women during the 2004 to 2005 academic year were recruited to participate. The initial baseline visit occurred within the first 6 weeks of the fall 2004 semester, with the follow-up visit occurring during the last 6 weeks of the spring 2005 semester. At each visit, height, weight, BMI, waist and hip circumferences, and body composition (by DXA) were obtained. Results: One hundred thirty-seven participants completed both the fall and spring visits. Significant (p < 0.0001) increases between the fall and spring visits were observed for body weight (58.6 vs. 59.6 kg), BMI (21.9 vs. 22.3), percentage body fat (28.9 vs. 29.7), total fat mass (16.9 vs. 17.7 kg), fat-free mass (38.1 vs. 38.4 kg), waist circumference (69.4 vs. 70.3 cm), and hip circumference (97.4 vs. 98.6 cm), with no significant difference observed in the waist-to-hip ratio (0.71 vs. 0.71; p = 0.78). Discussion: Although statistically significant, changes in body weight, body composition, and fat mass were modest for women during their freshman year of college. These results do not support the purported freshman 15 weight gain publicized in the popular media.