15 resultados para Gastric motility

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cav(DGV)) to study LB formation and to examine its effect on LB function. We now show that the cav(DGV) mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three mutants with Tn5-B21 insertion in tonB3 (PA0406) of Pseudomonas aeruginosa exhibited defective twitching motility and reduced assembly of extracellular pili. These defects could be complemented with wild-type tonB3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the implementation of programs to control lymphatic filariasis and soil-transmitted helminths using broad spectrum anthelmintics, including albendazole and ivermectin, there is a need to develop an in vitro assay for detection of drug resistance. This report describes an in vitro assay for measuring the effects of ivermectin and benzimidazoles on the motility of larvae of the hookworm species Ancylostoma ceylanicum, A. caninum, and Necator americanus, and Strongyloides species including Strongyloides stercoralis, and S. ratti. A dose-response relationship was demonstrated with each of the parasite species, with distinct differences observed between the various species. In pilot field testing of the assay with N. americanus larvae recovered from human fecal samples, a dose-response relationship was observed with ivermectin. While the assay has demonstrated the ability to determine drug responsiveness, its usefulness in resistance detection will require correlation with the clinical outcome among individuals infected with parasite strains showing different drug sensitivities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field-applicable assay for testing anthelmintic sensitivity is required to monitor for anthelmintic resistance. We undertook a study to evaluate the ability of three in vitro assay systems to define drug sensitivity of clinical isolates of the human hookworm parasite Necator americanus recovered from children resident in a village in Madang Province, Papua New Guinea. The assays entailed observation of drug effects on egg hatch (EHA), larval development (LDA), and motility of infective stage larvae (LMA). The egg hatch assay proved the best method for assessing the response to benzimidazole anthelmintics, while the larval motility assay was suitable for assessing the response to ivermectin. The performance of the larval development assay was unsatisfactory on account of interference caused by contaminating bacteria. A simple protocol was developed whereby stool samples were subdivided and used for immediate egg recovery, as well as for faecal culture, in order to provide eggs and infective larvae, respectively, for use in the egg hatch assay and larval motility assay systems. While the assays proved effective in quantifying drug sensitivity in larvae of the drug-susceptible hookworms examined in this study, their ability to indicate drug resistance in larval or adult hookworms remains to be determined. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional interaction between bacterial surface-displayed autoaggregation proteins such as antigen 43 (Ag43) of Escherichia coli and motility organelles such as flagella has not previously been described. Here, it has been demonstrated for the first time that Ag43-mediated aggregation can inhibit bacterial motility. Ag43 overexpression produces a dominant aggregation phenotype that overrides motility in the presence of low levels of flagella. In contrast, induction of an increased flagellation state prevents Ag43-mediated aggregation. This phenomenon was observed in naturally occurring subpopulations of E coli as phase variants expressing and not expressing Ag43 revealed contrasting motility phenotypes. The effects were shown to be part of a general mechanism because other short adhesins capable of mediating autoaggregation (AIDA-I and TibA) also impaired motility. These novel insights into the function of bacterial autoaggregation proteins suggest that a balance between these two systems, i.e. autoaggregation and flagellation, influences motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Dipalmitoylphosphatidycholine (DPPC) is the characteristic and main constituent of surfactant. Adsorption of surfactant to epithelial surfaces may be important in the masking of receptors. The aims of the study were to (i) compare the quantity of free DPPC in the airways and gastric aspirates of children with gastroesophageal reflux disease (GORD) to those without and (ii) describe the association between free DPPC levels with airway cellular profile and capsaicin cough sensitivity. Methods: Children aged < 14 years were defined as 'coughers' if a history of cough in association with their GORD symptoms was elicited before gastric aspirates and nonbronchoscopic bronchoalveolar lavage (BAL) were obtained during elective flexible upper gastrointestinal endoscopy. GORD was defined as histological presence of reflux oesophagitis. Spirometry and capsaicin cough-sensitivity test was carried out in children aged > 6 years before the endoscopy. Results: Median age of the 68 children was 9 years (interquartile range (IQR) 7.2). Median DPPC level in BAL of children with cough (72.7 mu g/mL) was similar to noncoughers (88.5). There was also no significant difference in DPPC levels in both BAL and gastric aspirates of children classified according to presence of GORD. There was no correlation between DPPC levels and cellular counts or capsaicin cough-sensitivity outcome measures. Conclusion: We conclude that free DPPC levels in the airways and gastric aspirate is not influenced by presence of cough or GORD defined by histological presence of reflux oesophagitis. Whether quantification of adsorbed surfactant differs in these groups remain unknown. Free DPPC is unlikely to have a role in masking of airway receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following ingestion of a meal, postprandial hyperglycemia in cats persists for 20–24 hrs, which is much longer than for dogs and human beings, and the reasons for this are unknown. The objectives of this study were 1) to describe the patterns of postprandial plasma glucose, D-lactate, and Llactate concentrations, and gastric emptying time in meal-fed cats and 2) to assess the effects of meal volume on gastric emptying time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The virulence of Pseudomonas aeruginosa and other surface pathogens involves the coordinate expression of a wide range of virulence determinants, including type IV pili. These surface filaments are important for the colonization of host epithelial tissues and mediate bacterial attachment to, and translocation across, surfaces by a process known as twitching motility. This process is controlled in part by a complex signal transduction system whose central component, ChpA, possesses nine potential sites of phosphorylation, including six histidine-containing phosphotransfer (HPt) domains, one serine-containing phosphotransfer domain, one threonine-containing phosphotransfer domain, and one CheY-like receiver domain. Here, using site-directed mutagenesis, we show that normal twitching motility is entirely dependent on the CheY-like receiver domain and partially dependent on two of the HPt domains. Moreover, under different assay conditions, point mutations in several of the phosphotransfer domains of ChpA give rise to unusual "swarming" phenotypes, possibly reflecting more subtle perturbations in the control of P. aeruginosa motility that are not evident from the conventional twitching stab assay. Together, these results suggest that ChpA plays a central role in the complex regulation of type IV pilus-mediated motility in P. aeruginosa