11 resultados para GUI legacy Windows Form web-application
em University of Queensland eSpace - Australia
Resumo:
The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.
Resumo:
Purpose, An in vitro study was carried out to determine the iontophoretic permeability of local anesthetics through human epidermis. The relationship between physicochemical structure and the permeability of these solutes was then examined using an ionic mobility-pore model developed to define quantitative relationships. Methods. The iontophoretic permeability of both ester-type anesthetics (procaine, butacaine, tetracaine) and amide-type anesthetics (prilocaine, mepivacaine, lidocaine, bupivacaine, etidocaine, cinchocaine) were determined through excised human epidermis over 2 hrs using a constant d.c. current and Ag/AgCl electrodes. Individual ion mobilities were determined from conductivity measurements in aqueous solutions. Multiple stepwise regression was applied to interrelate the iontophoretic permeability of the solutes with their physical properties to examine the appropriateness of the ionic mobility-pore model and to determine the best predictor of iontophoretic permeability of the local anesthetics. Results. The logarithm of the iontophoretic permeability coefficient (log PCj,iont) for local anesthetics was directly related to the log ionic mobility and MW for the free volume form of the model when other conditions are held constant. Multiple linear regressions confirmed that log PCj,iont was best defined by ionic mobility (and its determinants: conductivity, pK(a) and MW) and MW. Conclusions. Our results suggest that of the properties studied, the best predictors of iontophoretic transport of local anesthetics are ionic mobility (or pK(a)) and molecular size. These predictions are consistent with the ionic mobility pore model determined by the mobility of ions in the aqueous solution, the total current, epidermal permselectivity and other factors as defined by the model.
Resumo:
Two basic representations of principal-agent relationships, the 'state-space' and 'parameterized distribution' formulations, have emerged. Although the state-space formulation appears more natural, analytical studies using this formulation have had limited success. This paper develops a state-space formulation of the moral-hazard problem using a general representation of production under uncertainty. A closed-form solution for the agency-cost problem is derived. Comparative-static results are deduced. Next we solve the principal's problem of selecting the optimal output given the agency-cost function. The analysis is applied to the problem of point-source pollution control. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The removal of chemicals in solution by overland how from agricultural land has the potential to be a significant source of chemical loss where chemicals are applied to the soil surface, as in zero tillage and surface-mulched farming systems. Currently, we lack detailed understanding of the transfer mechanism between the soil solution and overland flow, particularly under field conditions. A model of solute transfer from soil solution to overland flow was developed. The model is based on the hypothesis that a solute is initially distributed uniformly throughout the soil pore space in a thin layer at the soil surface. A fundamental assumption of the model is that at the time runoff commences, any solute at the soil surface that could be transported into the soil with the infiltrating water will already have been convected away from the area of potential exchange. Solute remaining at the soil surface is therefore not subject to further infiltration and may be approximated as a layer of tracer on a plane impermeable surface. The model fitted experimental data very well in all but one trial. The model in its present form focuses on the exchange of solute between the soil solution and surface water after the commencement of runoff. Future model development requires the relationship between the mass transfer parameters of the model and the time to runoff: to be defined. This would enable the model to be used for extrapolation beyond the specific experimental results of this study. The close agreement between experimental results and model simulations shows that the simple transfer equation proposed in this study has promise for estimating solute loss to surface runoff. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
A family of potent insecticidal toxins has recently been isolated from the venom of Australian funnel web spiders. Among these is the 37-residue peptide omega-atracotoxin-HV1 (omega-ACTX-HV1) from Hadronyche versuta. We have chemically synthesized and folded omega-ACTX-HV1, shown that it is neurotoxic, ascertained its disulphide bonding pattern, and determined its three-dimensional solution structure using NMR spectroscopy. The structure consists of a solvent-accessible beta-hairpin protruding from a disulphide-bonded globular core comprising four beta-turns. The three intramolecular disulphide bonds form a cystine knot motif similar to that seen in several other neurotoxic peptides. Despite limited sequence identity, omega-ACTX-HV1 displays significant structural homology with the omega-agatoxins and omega-conotoxins, both of which are vertebrate calcium channel antagonists; however, in contrast with these toxins, we show that omega-ACTX-HV1 inhibits insect, but not mammalian, voltage-gated calcium channel currents.
Resumo:
This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclic peptides are appealing targets in the drug-discovery process. Unfortunately, there currently exist no robust solid-phase strategies that allow the synthesis of large arrays of discrete cyclic peptides. Existing strategies are complicated, when synthesizing large libraries, by the extensive workup that is required to extract the cyclic product from the deprotection/cleavage mixture. To overcome this, we have developed a new safety-catch linker. The safety-catch concept described here involves the use of a protected catechol derivative in which one of the hydroxyls is masked with a benzyl group during peptide synthesis, thus making the linker deactivated to aminolysis. This masked derivative of the linker allows BOC solid-phase peptide assembly of the linear precursor. Prior to cyclization, the linker is activated and the linear peptide deprotected using conditions commonly employed (TFMSA), resulting in deprotected peptide attached to the activated form of the linker. Scavengers and deprotection adducts are removed by simple washing and filtration. Upon neutralization of the N-terminal amine, cyclization with concomitant cleavage from the resin yields the cyclic peptide in DMF solution. Workup is simple solvent removal. To exemplify this strategy, several cyclic peptides were synthesized targeted toward the somatostatin and integrin receptors. From this initial study and to show the strength of this method, we were able to synthesize a cyclic-peptide library containing over 400 members. This linker technology provides a new solid-phase avenue to access large arrays of cyclic peptides.
Resumo:
Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV. SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5110) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom. FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Quantification of calcium in the cuticle of the fly larva Exeretonevra angustifrons was undertaken at the micron scale using wavelength dispersive X-ray microanalysis, analytical standards, and a full matrix correction. Calcium and phosphorus were found to be present in the exoskeleton in a ratio that indicates amorphous calcium phosphate. This was confirmed through electron diffraction of the calcium-containing tissue. Due to the pragmatic difficulties of measuring light elements, it is not uncommon in the field of entomology to neglect the use of matrix corrections when performing microanalysis of bulk insect specimens. To determine, firstly, whether such a strategy affects the outcome and secondly, which matrix correction is preferable, phi-rho (z) and ZAF matrix corrections were contrasted with each other and without matrix correction. The best estimate of the mineral phase was found to be given by using the phi-rho (z) correction. When no correction was made, the ratio of Ca to P fell outside the range for amorphous calcium phosphate, possibly leading to flawed interpretation of the mineral form when used on its own.