2 resultados para GRANULITE-FACIES ROCKS

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A granodiorite from Akilia, southwest Greenland, previously suggested to date putative life-bearing rocks to greater than or equal to3.84 Ga, is re-investigated using whole-rock major and trace-element geochemistry, and detailed cathodoluminescence image-guided secondary ion mass spectrometer analyses of zircon U-Th-Pb and rare earth elements. Complex zircon internal structure reveals three episodes of zircon growth and/or recrystallization dated to c. 3.84 Ga, 3.62 Ga and 2.71 Ga. Rare earth element abundances imply a significant role for garnet in zircon generation at 3.62 Ga and 2.71 Ga. The 3.62 Ga event is interpreted as partial melting of a c. 3.84 Ga grey gneiss precursor at granulite facies with residual garnet. Migration of this 3.62 Ga magma (or melt-crystal mush) away from the melt source places a maximum age limit on any intrusive relationship. These early Archaean relationships have been complicated further by isotopic reworking in the 2.71 Ga event, which could have included a further episode of partial melting. This study highlights a general problem associated with dating thin gneissic veins in polyphase metamorphic terranes, where field relationships may be ambiguous and zircon inheritance can be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.