27 resultados para GLUCOSE-HOMEOSTASIS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE - To assess the effect of age on glucose metabolism by examining 1) glucose metabolism in young and middle-aged subjects when total or regional adiposity is taken into account and 2) in vitro glucose transport in adipose tissue explants from young and middle-aged women paired for total and abdominal adiposity. RESEARCH DESIGN AND METHODS - Study 1: body composition, subcutaneous abdominal and visceral adipose tissue areas, and fasting and oral glucose-stimulated glucose and insulin were measured in 84 young and 81 middle-aged men and in 110 young and 91 middle-aged women. Study 2: glucose uptake in subcutaneous abdominal and visceral adipose tissue explants were measured in eight young and eight middle-aged women. RESULTS - Study 1: young and middle-aged men showed similar subcutaneous abdominal tissue area, whereas fat mass and visceral adipose tissue were greater in middle-aged than in young men (P < 0.01). Fat mass and subcutaneous and visceral adipose tissue areas were greater in middle-aged as compared with young women (P < 0.01). Fasting plasma glucose and the glucose response to an oral glucose tolerance test were significantly higher in middle-aged than in young men and women (P < 0.001). Statistical control for visceral adipose tissue area eliminated the difference seen in glucose response in men and women. Study 2: glucose transport in subcutaneous and omental adipose tissue did not differ between young and middle-aged women. CONCLUSIONS - 1) Visceral obesity, more than age per se, correlates with glucose intolerance in middle-aged subjects; 2) aging does not influence in vitro adipose tissue glucose uptake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: To describe the glycaemic status (assessed by an oral glucose tolerance test (OGTT)) and associated comorbidities in a cohort of Australian children and adolescents at risk of insulin resistance and impaired glucose homeostasis (IGH). Methods: Twenty-one children and adolescents (three male, 18 female) (18 Caucasian, one Indigenous, two Asian) (20 obese, one lipodystrophy) referred to the Paediatric Endocrinology and Diabetes Clinic underwent a 2-h OGTT with plasma glucose and insulin measured at baseline, + 60 and + 120 min. If abnormal, the OGTT was repeated. Results: The mean (SD) age was 14.2 (1.6) years, BMI 38.8 (7.0) kg/m(2) and BMI-SDS 3.6 (0.6). Fourteen patients had fasting insulin levels >21 mU/L. Type 2 diabetes mellitus was diagnosed in one patient, impaired glucose tolerance (IGT) in four patients and impaired fasting glycaemia (IFG) in one patient. Despite no weight loss, only one patient had a persistently abnormal OGTT on repeat testing. Three patients with IGH were medicated with risperidone at the time of the initial OGTT. One patient who had persistent IGT had continued risperidone. The other two patients had initial OGTT results of IGT and diabetes mellitus type 2. They both ceased risperidone between tests and repeat OGTT showed normal glycaemic status. Conclusions: Use of fasting glucose alone may miss cases of IGH. Diagnosis of IGT should not be made on one test alone. Interpretation of glucose and insulin responses in young people is limited by lack of normative data. Larger studies are needed to generate Australian screening recommendations. Further assessment of the potential adverse effects of atypical antipsychotic medication on glucose homeostasis in this at-risk group is important.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole body glucose homeostasis is dependent on the action of insulin. In muscle and adipose tissues, insulin stimulates glucose uptake by inducing the translocation of vesicles containing the glucose transporter GLUT4 to the cell surface. While the mechanisms of insulin-regulated GLUT4 translocation are not fully understood, some signaling intermediates have been implicated in this process. Interestingly, som: of these intermediates, including IRS-1 and PI3K, have been localised to the same intracellular membrane fraction as the GLUT4 storage pool, designated here as the high-speed pellet (HSP) fraction. This raises the possibility that many of the downstream insulin signaling intermediates may be located within close proximity to intracellular GLUT4. The goal of this study was to test this hypothesis in 3T3-L1 adipocytes. A large proportion of adipocyte phosphoproteins co-fractionated in the HSP fraction. In an attempt to resolve insulin-regulatable phosphoproteins, we subjected P-32-labeled subcellular fractions to two-dimensional gel electrophoresis (2-DE). Insulin reproducibly stimulated the phosphorylation of 12 spots in the HSP fraction. Most of the HSP phosphoproteins were insoluble in the nonionic detergent Triton X-100, whereas integral membrane proteins such as GLUT4 and intracellular caveolin were soluble under the same conditions. These results suggest that insulin-regulatable phosphoproteins in adipocytes may be organized in microdomains within the cell and that this assembly may act as an efficient conductor of the signaling proteins to rapidly facilitate downstream biological responses. Further study is required to establish the molecular basis for these detergent-insoluble signaling complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity affects aspects of glucose homeostasis such as insulin secretion and insulin sensitivity. Hormones secreted by adipocytes like leptin mediate the metabolic consequences of obesity. Incretin hormones like glucagon-like peptide-1 (GLP-1) increase insulin secretion in response to changes in blood glucose concentration and have been proposed to regulate insulin secretion in fasting, overweight dogs. The aim of this study was to examine hormonal mechanisms by which adiposity alters glucose homeostasis, plasma insulin concentration, and insulin sensitivity in spontaneously overweight dogs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolism, in part, is regulated by the peroxisome proliferator-activated receptors (PPARs). The PPARs act as nutritional lipid sensors and three mammalian PPAR subtypes designated PPARalpha (NR1C1), PPARgamma (NR1C3) and PPARdelta (NR1C2) have been identified. This subgroup of nuclear hormone receptors binds DNA and controls gene expression at the nexus of pathways that regulate lipid and glucose homeostasis, energy storage and expenditure in an organ-specific manner. Recent evidence has demonstrated activation of PPARdelta in the major mass peripheral tissue (ie, adipose and skeletal muscle). It enhances glucose tolerance, insulin-stimulated glucose disposal, lipid catabolism, energy expenditure, cholesterol efflux and oxygen consumption. These effects positively influence the blood-lipid profile. Furthermore, PPARdelta activation produces a predominant type I/slow twitch/oxidative muscle fiber phenotype that leads to increased endurance, insulin sensitivity and resistance to obesity. PPARdelta has rapidly emerged as a potential target in the battle against dyslipidemia, insulin insensitivity, type II diabetes and obesity, with therapeutic efficacy in the treatment of cardiovascular disease risk factors. GW-501516 is currently undergoing phase II safety and efficacy trials in human volunteers for the treatment of dyslipidemia. The outcome of these clinical trials are eagerly awaited against a background of conflicting reports about cancer risks in genetically predisposed animal models. This review focuses on the potential pharmacological utility of selective PPARdelta agonists in the context of risk factors associated with metabolic and cardiovascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The staggerer mice carry a deletion in the RORalpha gene and have a prolonged humoral response, overproduce inflammatory cytokines, and are immunodeficient. Furthermore, the staggerer mice display lowered plasma apoA-I/-II, decreased plasma high density lipoprotein cholesterol and triglycerides, and develop hypo-alpha-lipoproteinemia and atherosclerosis. However, relatively little is known about RORalpha in the context of target tissues, target genes, and lipid homeostasis. For example, RORalpha is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for similar to40% of total body weight and 50% of energy expenditure. This lean tissue is a primary site of glucose disposal and fatty acid oxidation. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. In particular, the role of RORalpha in skeletal muscle metabolism has not been investigated, and the contribution of skeletal muscle to the ROR-/- phenotype has not been resolved. We utilize ectopic dominant negative RORalpha expression in skeletal muscle cells to understand the regulatory role of RORs in this major mass peripheral tissue. Exogenous dominant negative RORalpha expression in skeletal muscle cells represses the endogenous levels of RORalpha and -gamma mRNAs and ROR-dependent gene expression. Moreover, we observed attenuated expression of many genes involved in lipid homeostasis. Furthermore, we show that the muscle carnitine palmitoyltransferase-1 and caveolin-3 promoters are directly regulated by ROR and coactivated by p300 and PGC-1. This study implicates RORs in the control of lipid homeostasis in skeletal muscle. In conclusion, we speculate that ROR agonists would increase fatty acid catabolism in muscle and suggest selective activators of ROR may have therapeutic utility in the treatment of obesity and atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Statins are known to enhance atherosclerotic plaque stability through influences on extracellular matrix homeostasis. Net matrix production reflects the relative balance of matrix production and degradation through enzymes such as matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitor of MMP (TIMPs). The effects of statins on endothelial cell production of these parameters following co-exposure with a proatherogenic stimulus such as high glucose are not known. Methods Human endothelial cells were exposed for 72 h to 5 mM> (control) or 25 mM (high) glucose +/- atorvastatin (1 mumol/l). Extracellular matrix homeostasis was assessed by measuring matrix metalloproteinase (MMP)-2 secretion, tissue inhibitor of MMP (TIMP)-1 and -2 secretion and net collagen IV production. Results were expressed as percentage +/- SEM of control values. Results Exposure to high glucose increased cellular collagen IV expression to 190.1 +/- 11.7% (P < 0.0001) of control levels. No change in MMP-2 secretion (111.6 +/- 5.2%; P > 0.05) was observed but both TIMP-1 and TIMP-2 expression were increased to 136.3 +/- 6.4% and 144.0 +/- 27.5%, respectively (both P < 0.05). The presence of atorvastatin in high glucose conditions reduced collagen IV expression to 136.1 +/- 20.6%. This was paralleled by increased secretion of MMP-2 to 145.8 +/- 7.8% (P < 0.01), increased TIMP-2 expression to 208.0 +/- 21.3% (P < 0.005 compared with high glucose) but no change in TIMP-1 expression (155.1 +/- 14.6%) compared with high glucose alone. The presence of atorvastatin in control conditions did not affect levels of collagen IV expression (114.5 +/- 13.2%). Conclusions Endothelial cell exposure to high glucose was associated with a MMP/TIMP profile that increased extracellular matrix production which was attenuated by concurrent exposure to atorvastatin. Consequently, a mechanism by which the atherosclerotic plaque regression that is observed in patients taking these drugs has been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amount of crystalline fraction present in monohydrate glucose crystal-solution mixture up to 110% crystal in relation to solution (crystal:solution=110:100) was determined by water activity measurement. It was found that the water activity had a strong linear correlation (R-2=0.994) with the amount of glucose present above saturation. Difference in the water activities of the crystal-solution mixture (a(w1)) and the supersaturated solution (a(w2)) by re-dissolving the crystalline fraction allowed calculation of the amount of crystalline phase present (DeltaG) in the mixture by an equation DeltaG=846.97(a(w1)-a(w2)). Other methods such as Raoult's, Norrish and Money-Born equations were also tested for the prediction of water activity of supersaturated glucose solution. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prospective randomized trial was conducted to compare the efficacy of a rice-based oral rehydration solution (ORS) with glucose ORS in infants and children under 5 years of age with acute diarrhoea and mild to moderate dehydration (<10%). One hundred children presenting to a large metropolitan teaching hospital were eligible for entry to the study and were randomized to receive rice ORS or glucose ORS. Outcome measures were stool output (SO), duration of illness (DD) and recovery time to introduction of other fluids (RTF) and diet (RTD). Significant differences were found for all outcome measures in favour of the rice ORS group. Mean SO was lower (160 vs 213 mt; P<0.02), mean DD was reduced (17.3 vs 24.3 h; P = 0.03) and median RTF was decreased (12.7 vs 18.1 h; P< 0.001) in the rice ORS group compared with the glucose ORS group. The median rime to introduction of diet and mean length of hospital stay showed similar significant reductions. Our study has shown rice ORS to be an acceptable alternative to glucose ORS in young children and have shown that it is significantly more effective in reducing the course of diarrhoeal illness and the time taken to return to normal drinking and eating habits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose loading of rats made thiamin deficient by dietary deprivation of thiamin and the administration of pyrithiamin (40 mug/100 g, i.p.) precipitates an acute neuropathy, a model of Wernicke's encephalopathy in man (Zimitat and Nixon, Metab. Brain Dis. 1999;14:1-20). Immunohistochemical detection of Fos proteins was used as a marker to identify neuronal populations in the thiamin-deficient rat brain affected by glucose loading. As thiamin deficiency progressed, the extent and intensity of Fos-Like immunoreactivity (FLI) in brain structures typically affected by thiamin deficiency (the thalamus, mammillary bodies, inferior colliculus, vestibular nucleus and inferior olives) were markedly increased when compared to thiamin-replete controls. Glucose loading for 1-3 days further increased the intensity of FLI in these same regions, consistent with a dependence of Fos expression on carbohydrate metabolism as well as on thiamin deficiency. The timed acute changes that follow a bolus glucose load administered to thiamin-deficient animals may provide a sequential account of events in the pathogenesis of brain damage in this model of Wernicke's encephalopathy. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To obtain methotrexate (MTX) derivatives with a balanced hydrolipophilic character, we synthesized a series of conjugates in which the drug was linked to lipoamino acid (LAA)-glucose residues (LAAG-MTX). These conjugates displayed increased solubility in polar media compared with the corresponding LAA-MTX conjugates previously described. In vitro biological testing of LAAG-MTX indicated that the introduction of the sugar moiety decreased the biological activity of these MTX conjugates. The tetradecyl derivative 6b, however, was effective in inhibiting the dihydrofolate reductase activity in vitro and showed an inhibitory effect on human lymphoblastoid cell growth. (C) 2001 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was undertaken to assess changes in zinc and copper homeostasis in human tissues that could be attributed to human exposure to environmental cadmium, using samples of lung, liver and kidney cortex of 61 Queensland residents, aged 2 to 89 years, who had died of accidental causes. None of the subjects were exposed to cadmium in the workplace. Levels of zinc in liver and kidney cortex samples showed inverse associations with donor age whereas zinc in lung only showed inverse association with gender. Lung zinc levels in females were 14% lower than in males. Zinc in liver and kidney cortex samples were found to exist in at least two pools; one was associated with cadmium that bound to metallothionein (MT) and the other was associated with non - MTbound copper. In liver, the amounts of zinc in the MT pool were smaller compared to those in non-MT pool given that only 7% of zinc variations were explained by cadmium whereas 22% of the liver zinc Variations were accounted for by non - MT bound copper. In sharp contrast, larger amounts of zinc in kidney cortex samples were in the MT pool, compared to those in the non-MT pool given that cadmium was found to explain 69% of total zinc variation whereas copper explained only 17% of kidney zinc variations. The levels of copper in liver were found to be increased by 45-50% in subjects with high cadmium exposure level, compared to subjects of similar ages with medium exposure level. The levels of zinc and copper in kidney cortex samples in the subjects with high cadmium exposure were both found to be significantly elevated compared to those found in the medium-exposure group whereas copper contents were about 19-23% greater than in medium- as well as low-exposure groups. Taken together these results indicate increased sequestration of zinc and copper in liver and kidney cortex samples. The increases in metal sequestrations were observed in liver samples having cadmium contents of greater than 1 mug/g wet weight and in kidney cortex having cadmium contents of greater than 26 mug/g wet weight. Zinc and copper contents in lung of this sample group, however, were not associated with cadmium due probably to lower exposure levels compared to those of liver and kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-To determine reference values and test variability for glucose tolerance tests (GTT), insulin tolerance tests (ITT), and insulin sensitivity tests (IST) in cats, Animals-32 clinically normal cats. Procedure-GTT, ITT, and IST were performed on consecutive days. Tolerance intervals tie, reference values) were calculated as means +/- 2.397 SD for plasma glucose and insulin concentrations, half-life of glucose (T-1/2glucose), rate constants for glucose disappearance (K-glucose and K-itt), and insulin sensitivity index (S-l). Tests were repeated after 6 weeks in 8 cats to determine test variability. Results-Reference values for T-1/2glucose, K-glucose, and fasting plasma glucose and insulin concentrations during GTT were 45 to 74 minutes, 0.93 to 1.54 %/min, 37 to 104 mg/dl, and 2.8 to 20.6 muU/ml, respectively. Mean values did not differ between the 2 tests. Coefficients of variation for T-1/2glucose, K-glucose, and fasting plasma glucose and insulin concentrations were 20, 20, 11, and 23%, respectively. Reference values for K-itt were 1.14 to 7.3%/min, and for S-l were 0.57 to 10.99 x 10(-4) min/muU/ml. Mean values did not differ between the 2 tests performed 6 weeks apart, Coefficients of variation for K-itt and S-l were 60 and 47%, respectively. Conclusions and Clinical Relevance-GTT, ITT, and IST can be performed in cats, using standard protocols. Knowledge of reference values and test variability will enable researchers to better interpret test results for assessment of glucose tolerance, pancreatic beta -cell function, and insulin sensitivity in cats.