21 resultados para GLUCOSE TOLERANCE TEST
em University of Queensland eSpace - Australia
Resumo:
Objectives: To describe the glycaemic status (assessed by an oral glucose tolerance test (OGTT)) and associated comorbidities in a cohort of Australian children and adolescents at risk of insulin resistance and impaired glucose homeostasis (IGH). Methods: Twenty-one children and adolescents (three male, 18 female) (18 Caucasian, one Indigenous, two Asian) (20 obese, one lipodystrophy) referred to the Paediatric Endocrinology and Diabetes Clinic underwent a 2-h OGTT with plasma glucose and insulin measured at baseline, + 60 and + 120 min. If abnormal, the OGTT was repeated. Results: The mean (SD) age was 14.2 (1.6) years, BMI 38.8 (7.0) kg/m(2) and BMI-SDS 3.6 (0.6). Fourteen patients had fasting insulin levels >21 mU/L. Type 2 diabetes mellitus was diagnosed in one patient, impaired glucose tolerance (IGT) in four patients and impaired fasting glycaemia (IFG) in one patient. Despite no weight loss, only one patient had a persistently abnormal OGTT on repeat testing. Three patients with IGH were medicated with risperidone at the time of the initial OGTT. One patient who had persistent IGT had continued risperidone. The other two patients had initial OGTT results of IGT and diabetes mellitus type 2. They both ceased risperidone between tests and repeat OGTT showed normal glycaemic status. Conclusions: Use of fasting glucose alone may miss cases of IGH. Diagnosis of IGT should not be made on one test alone. Interpretation of glucose and insulin responses in young people is limited by lack of normative data. Larger studies are needed to generate Australian screening recommendations. Further assessment of the potential adverse effects of atypical antipsychotic medication on glucose homeostasis in this at-risk group is important.
Resumo:
Posttransplantation diabetes (PTD) contributes to cardiovascular disease and graft loss in renal transplant recipients (RTR). Current recommendations advise fasting blood glucose (FBG) as the screening and diagnostic test of choice for PTD. This study sought to determine (1) the predictive power of FBG with respect to 2-h blood glucose (2HBG) and (2) the prevalence of PTD using FBG and 2HBG compared with that using FBG alone, in prevalent RTR. A total of 200 RTR (mean age 52 yr; 59% male; median transplant duration 6.6 yr) who were >6 mo posttransplantation and had no known history of diabetes were studied. Patients with FBG
Resumo:
OBJECTIVE - We examined the associations of physical activity with fasting plasma glucose (FPG) and with 2-h postload plasma glucose (2-h PG) in men and women with low, moderate, and high waist circumference. RESEARCH DESIGN AND METHODS - The Australian Diabetes, Obesity and Lifestyle (AusDiab) study provided data on a population-based cross-sectional sample of 4,108 men and 5,106 women aged >= 25 years without known diabetes or health conditions that could affect physical activity. FPG and 2-h PG were obtained from an oral glucose tolerance test. Self-reported physical activity level was defined according to the current public health guidelines as active (>= 150 min/week across five or more sessions) or inactive (< 150 min/week and/or less than five sessions). Sex-specific quintiles of physical activity time were used to ascertain dose response. RESULTS - Being physically active and total physical activity time were independently and negatively associated with 2-h PG. When physical activity level was considered within each waist circumference category, 2-h PG was significantly lower in active high-waist circumference women (beta-0.30 [95% CI -0.59 to -0.01], P = 0.044) and active low-waist circumference men(beta-0.25 [-0.49 to -0.02],P = 0.036) compared with their inactive counterparts. Considered across physical activity and waist circumference categories, 2-h PG levels were not significantly different between active moderate-waist circumference participants and active low-waist circumference participants. Associations between physical activity and FPG were nonsignificant. CONCLUSIONS - There are important differences between 2-h PG and FPG related to physical activity. It appears that 2-h PG is more sensitive to the beneficial effects of physical activity, and these benefits occur across the waist circumference spectrum.
Resumo:
OBJECTIVE - To assess the concurrent validity of fasting indexes of insulin sensitivity and secretion in - obese prepubertal (Tanner stage 1) children and pubertal (Tanner stages 2-5) glucose tolerance test (FSIVGTT) as a criterion measure. RESEARCH DESIGN AND METHODS - Eighteen obese children and adolescents (11 girls and 7 boys, mean age 12.2 +/- 2.4 years, mean BMI 35.4 +/- 6.2 kg/m(2), mean BMI-SDS 3.5 +/- 0.5, 7 prepubertal and I I pubertal) participated in the study. All participants underwent an insulin-modified FSIVGTT on two occasions, and 15 repeated this test a third time (mean 12.9 and 12.0 weeks apart). S-i measured by the FSIVGTT was compared with homeostasis model assessment (HOMA) of insulin resistance (HOMA-IR), quantitative insulin-sensitivity check index (QUICKI), fasting glucose-to-insulin ratio (FGIR), and fasting insulin (estimates of insulin sensitivity derived from fasting samples). The acute insulin response (AIR) measured by the FSIVGTT was compared with HOMA of percent beta-cell function (HOMA-beta%), FGIR, and fasting insulin (estimates of insulin secretion derived from fasting samples). RESULTS - There was a significant negative correlation between HOMA-IR and S-i (r = -0.89, r = -0.90, and r = -0.81, P < 0.01) and a significant positive correlation between QUICKI and S-i (r = 0.89, r = 0.90, and r = 0.81, P < 0.01) at each time point. There was a significant positive correlation between FGIR and S-i (r = 0.91, r = 0.91, and r = 0.82, P < 0.01) and a significant negative correlation between fasting insulin and S-i (r = -90, r = -0.90, and r = -0.88, P < 0.01). HOMA-beta% was not as strongly correlated with AIR (r = 0.60, r = 0.54, and r = 0.61, P < 0.05). CONCLUSIONS - HOMA-IR, QUICKI, FGIR, and fasting insulin correlate strongly with S-i assessed by the FSIVGTT in obese children and adolescents. Correlations between HOMA-β% FGIR and fasting insulin, and AIR were not as strong. Indexes derived from fasting samples are a valid tool for assessing insulin sensitivity in prepubertal and pubertal obese children.
Resumo:
Background: Epidemiologic evidence suggests that serum carotenoids are potent antioxidants and may play a protective role in the development of chronic diseases including cancers, cardiovascular disease, and inflammatory diseases. The role of these antioxidants in the pathogenesis of diabetes mellitus remains unclear. Objective: This study examined data from a cross-sectional survey to investigate the association between serum carotenoids and type 2 diabetes. Design: Study participants were adults aged >= 25 y (n = 1597) from 6 randomly selected cities and towns in Queensland, Australia. Study examinations conducted between October and December 2000 included fasting plasma glucose, an oral-glucose-tolerance test, and measurement of the serum concentrations of 5 carotenoid compounds. Results: Mean 2-h postload plasma glucose and fasting insulin concentrations decreased significantly with increasing quintiles of the 5 serum carotenoids-alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene. Geometric mean concentrations for all serum carotenoids decreased (all decreases were significant except that of lycopene) with declining glucose tolerance status. beta-Carotene had the greatest decrease, to geometric means of 0.59, 0.50, and 0.42 mu mol/L in persons with normal glucose tolerance, impaired glucose metabolism, and type 2 diabetes, respectively (P < 0.01 for linear trend), after control for potential confounders. Conclusions: Serum carotenoids are inversely associated with type 2 diabetes and impaired glucose metabolism. Randomized trials of diets high in carotenoid-rich vegetables and fruit are needed to confirm these results and those from other observational studies. Such evidence would have very important implications for the prevention of diabetes.
Resumo:
In cats with underlying low insulin sensitivity, obesity is a major risk factor for type 2 diabetes. Strategies to prevent the onset of type 2 diabetes could be implemented if these cats could be identified. Currently, two labour-intensive and complex methods have been used to measure insulin sensitivity in research studies: the hyperinsulinemic euglycemic clamp (Clamp) and the minimal model analysis (MINMOD) of a frequentlysampled intravenous glucose tolerance test. However, simpler measures are required in practice. Validation of simple measures requires a wellestablished method with minimal inter-day variability. The aims of this study were to determine the inter-day variability of the current methods of measuring insulin sensitivity in cats, and to assess the relationship between these tests and simpler measures of insulin sensitivity.
Resumo:
This study was undertaken to assess the impact of dietary carbohydrate source on food intake, body composition, glucose tolerance, insulin sensitivity, and glucose and insulin concentrations in overweight and obese cats with reduced insulin sensitivity. Sixteen overweight and obese cats were divided into two groups and randomly allocated one of two extruded diets formulated to contain similar starch content (33%) from different cereal sources (sorghum and corn versus rice). Meal response, glucose tolerance and insulin sensitivity tests were performed before and after a 6-week weight-maintenance phase and after an additional 8-week free-access feeding phase. Dual energy x-ray absorptiometry (DEXA)-derived body composition was determined in each cat before the study and after each test phase. Food intake was measured daily and body weight measured twice weekly for the duration of the study. When compared with the sorghum/corn-based diet, cats fed the rice-based diet consumed more energy and gained more weight in response to free-access feeding. Cats fed the rice-based diet also tended to have higher glucose concentrations and insulin secretion in response to a glucose load or a test meal. We conclude that a sorghum and corn blend is a superior carbohydrate source than rice for overweight cats with glucose intolerance and reduced insulin sensitivity. Such a diet may help to minimize overeating and additional weight gain, and may also reduce the risk of developing type 2 diabetes mellitus. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Study objective: Low birth weight predicts cardiovascular disease in adulthood, and one possible explanation is that children with lower birth weight consume more fat than those born heavier. Therefore, the objective of this study was to investigate associations between birth weight and childhood diet, and in particular, to test the hypothesis that birth weight is inversely related to total and saturated fat intake. Design: Prospective cohort study. Setting: South west England. Participants: A subgroup of children enrolled in the Avon longitudinal study of parents and children, with data on birth weight and also diet at ages 8, 18, 43 months, and 7 years ( 1152, 998, 848, and 771 children respectively). Main results: Associations between birth weight and diet increased in strength from age 8 to 43 months, but had diminished by age 7 years. Fat, saturated fat, and protein intakes were inversely, and carbohydrate intake was positively associated with birth weight at 43 months of age, after adjusting for age, sex, and energy intake. After adjustment for other confounders, all associations were weakened, although there was still a suggestion of a relation with saturated fat ( -0.48 (95% CI -0.97, 0.02) g/day per 500 g increase in birth weight. Similar patterns were seen in boys and girls separately, and when the sample was restricted to those with complete data at all ages. Conclusions: A small inverse association was found between birth weight and saturated fat intake in children at 43 months of age but this was not present at 7 years of age. This study therefore provides little evidence that birth weight modifies subsequent childhood diet.
Resumo:
Background and aim: Obesity is a risk factor for progression of fibrosis in chronic liver diseases such as non-alcoholic fatty liver disease and hepatitis C. The aim of this study was to investigate the longer term effect of weight loss on liver biochemistry, serum insulin levels, and quality of life in overweight patients with liver disease and the effect of subsequent weight maintenance or regain. Patients: Thirty one patients completed a 15 month diet and exercise intervention. Results: On completion of the intervention, 21 patients (68%) had achieved and maintained weight loss with a mean reduction of 9.4 (4.0)% body weight. Improvements in serum alanine aminotransferase (ALT) levels were correlated with the amount of weight loss (r=0.35, p=0.04). In patients who maintained weight loss, mean ALT levels at 15 months remained significantly lower than values at enrolment (p=0.004), while in regainers (n=10), mean ALT levels at 15 months were no different to values at enrolment (p=0.79). Improvements in fasting serum insulin levels were also correlated with weight loss (r=0.46, p=0.04), and subsequent weight maintenance sustained this improvement. Quality of life was significantly improved after weight loss. Weight maintainers sustained recommended levels of physical activity and had higher fasting insulin levels (p=0.03) at enrolment than weight regainers. Conclusion: In summary, these findings demonstrate that maintenance of weight loss and exercise in overweight patients with liver disease results in a sustained improvement in liver enzymes, serum insulin levels, and quality of life. Treatment of overweight patients should form an important component of the management of those with chronic liver disease.
Resumo:
There is evidence for the role of genetic and environmental factors in feline and canine diabetes. Type 2 diabetes is the most common form of diabetes in cats. Evidence for genetic factors in feline diabetes includes the overrepresentation of Burmese cats with diabetes. Environmental risk factors in domestic or Burmese cats include advancing age, obesity, male gender, neutering, drug treatment, physical inactivity, and indoor confinement. High-carbohydrate diets increase blood glucose and insulin levels and may predispose cats to obesity and diabetes. Low-carbohydrate, high-protein diets may help prevent diabetes in cats at risk such as obese cats or lean cats with underlying low insulin sensitivity. Evidence exists for a genetic basis and altered immune response in the pathogenesis of canine diabetes. Seasonal effects on the incidence of diagnosis indicate that there are environmental influences on disease progression. At least 50% of diabetic dogs have type 1 diabetes based on present evidence of immune destruction of P-cells. Epidemiological factors closely match those of the latent autoimmune diabetes of adults form of human type 1 diabetes. Extensive pancreatic damage, likely from chronic pancreatitis, causes similar to28% of canine diabetes cases. Environmental factors such as feeding of high-fat diets are potentially associated with pancreatitis and likely play a role in the development of pancreatitis in diabetic dogs. There are no published data showing that overt type 2 diabetes occurs in dogs or that obesity is a risk factor for canine diabetes. Diabetes diagnosed in a bitch during either pregnancy or diestrus is comparable to human gestational diabetes.
Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease
Resumo:
Skeletal muscle is a major mass peripheral tissue that accounts for similar to 40% of the total body mass and a major player in energy balance. It accounts for > 30% of energy expenditure, is the primary tissue of insulin stimulated glucose uptake, disposal, and storage. Furthermore, it influences metabolism via modulation of circulating and stored lipid (and cholesterol) flux. Lipid catabolism supplies up to 70% of the energy requirements for resting muscle. However, initial aerobic exercise utilizes stored muscle glycogen but as exercise continues, glucose and stored muscle triglycerides become important energy substrates. Endurance exercise increasingly depends on fatty acid oxidation (and lipid mobilization from other tissues). This underscores the importance of lipid and glucose utilization as an energy source in muscle. Consequently skeletal muscle has a significant role in insulin sensitivity, the blood lipid profile, and obesity. Moreover, caloric excess, obesity and physical inactivity lead to skeletal muscle insulin resistance, a risk factor for the development of type II diabetes. In this context skeletal muscle is an important therapeutic target in the battle against cardiovascular disease, the worlds most serious public health threat. Major risk factors for cardiovascular disease include dyslipidemia, hypertension, obesity, sedentary lifestyle, and diabetes. These risk factors are directly influenced by diet, metabolism and physical activity. Metabolism is largely regulated by nuclear hormone receptors which function as hormone regulated transcription factors that bind DNA and mediate the pathophysiological regulation of gene expression. Metabolism and activity, which directly influence cardiovascular disease risk factors, are primarily driven by skeletal muscle. Recently, many nuclear receptors expressed in skeletal muscle have been shown to improve glucose tolerance, insulin resistance, and dyslipidernia. Skeletal muscle and nuclear receptors are rapidly emerging as critical targets in the battle against cardiovascular disease risk factors. Understanding the function of nuclear receptors in skeletal muscle has enormous pharmacological utility for the treatment of cardiovascular disease. This review focuses on the molecular regulation of metabolism by nuclear receptors in skeletal muscle in the context of dyslipidemia and cardiovascular disease. (c) 2005 Published by Elsevier Ltd.