28 resultados para GLOBULAR CLUSTERS: INDIVIDUAL: SEGUE 3

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are undertaking a program to measure the characteristics of the intracluster light ( ICL; total flux, profile, color, and substructure) in a sample of 10 galaxy clusters with a range of cluster mass, morphology, and redshift. We present here the methods and results for the first cluster in that sample, A3888. We have identified an ICL component in A3888 in V and r that contains 13% +/- 5% of the total cluster light and extends to 700 h(70)(-1) kpc (similar to 0.3r(200)) from the center of the cluster. The ICL color in our smallest radial bin is V - r 0.3 +/- 0.1, similar to the central cluster elliptical galaxies. The ICL is redder than the galaxies at 400 h(70)(-1) kpc < r < 700 h(70)(-1) kpc, although the uncertainty in any one radial bin is high. Based on a comparison of V - r color with simple stellar models, the ICL contains a component that formed more than 7 Gyr ago ( at z less than 1) with a high-metallicity ( 1.0 Z(circle dot) < Z(ICL) less than or similar to 2.5 Z(circle dot)) and a more centralized component that contains stars formed within the past 5 Gyr ( at z similar to 1). The profile of the ICL can be roughly fitted by a shallow exponential in the outer regions and a steeper exponential in the central region. We also find a concentration of diffuse light around a small group of galaxies 1.4 h(70)(-1) Mpc from the center of the cluster. In addition, we find three low surface brightness features near the cluster center that are blue ( V - r 0.0) and contain a total flux of 0.1M*. Based on these observations and X-ray and galaxy morphology, we suggest that this cluster is entering a phase of significant merging of galaxy groups in the core, whereupon we expect the ICL fraction to grow significantly with the formation of a cD galaxy, as well as the infall of groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars, being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first dynamical analysis of a galaxy cluster to include a large fraction of dwarf galaxies. Our sample of 108 Fornax Cluster members measured with the UK Schmidt Telescope FLAIR-II spectrograph contains 55 dwarf galaxies (15.5 > b(j) > 18.0 or -16 > M-B > -13.5). H alpha emission shows that of the dwarfs are star forming, twice the fraction implied by morphological classifications. The total sample has a mean velocity of 1493 +/- 36 kms s(-1) and a velocity dispersion of 374 +/- 26 km s(-1). The dwarf galaxies form a distinct population: their velocity dispersion (429 +/- 41 km s(-1)) is larger than that of the giants () at the 98% confidence level. This suggests that the dwarf population is dominated by infalling objects whereas the giants are virialized. The Fornax system has two components, the main Fornax Cluster centered on NGC 1399 with cz = 1478 km s(-1) and sigma (cz) = 370 km s(-1) and a subcluster centered 3 degrees to the southwest including NGC 1316 with cz = 1583 km s(-1) and sigma (cz) = 377 km s(-1). This partition is preferred over a single cluster at the 99% confidence level. The subcluster, a site of intense star formation, is bound to Fornax and probably infalling toward the cluster core for the first time. We discuss the implications of this substructure for distance estimates of the Fornax Cluster. We determine the cluster mass profile using the method of Diaferio, which does not assume a virialized sample. The mass within a projected radius of 1.4 Mpc is (7 +/- 2) x 10(13) M-., and the mass-to-light ratio is 300 +/- 100 M-./L-.. The mass is consistent with values derived from the projected mass virial estimator and X-ray measurements at smaller radii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a search for compact dwarf galaxies in the Fornax cluster using the FLAIR spectrograph on the UK Schmidt Telescope. We measured radial velocities of 453 compact galaxies brighter than B-T approximate to 17.3 and found seven new compact dwarf cluster members that were not classified in previous surveys as members of the cluster. These are amongst the most compact, high surface brightness dwarf galaxies known. The inclusion of these galaxies in the cluster does not change the total luminosity function significantly, but they are important because of their extreme nature; one in particular appears to be a dwarf spiral. Three of the new dwarfs have strong emission lines and we identify them as blue compact dwarfs (BCDs), doubling the number of confirmed BCDs in the cluster. We also determined that none of the compact dwarf elliptical (M32-like) candidates is in the cluster, down to an absolute magnitude M-B = -13.2. We have investigated the claim of Irwin et al. that there is no strong relation between surface brightness and magnitude for the cluster members and find some support for this for the brighter galaxies (B-T < 17.3), but fainter galaxies still need to be measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes - 13 < M-B

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fornax Cluster Spectroscopic Survey (FCSS) project utilizes the Two-degree Field (2dF) multi-object spectrograph on the Anglo-Australian Telescope (AAT). Its aim is to obtain spectra for a complete sample of all 14 000 objects with 16 5 less than or equal to b(j) less than or equal to 19 7 irrespective of their morphology in a 12 deg(2) area centred on the Fornax cluster. A sample of 24 Fornax cluster members has been identified from the first 2dF field (3.1 deg(2) in area) to be completed. This is the first complete sample of cluster objects of known distance with well-defined selection limits. Nineteen of the galaxies (with -15.8 < M-B < 12.7) appear to be conventional dwarf elliptical (dE) or dwarf S0 (dS0) galaxies. The other five objects (with -13.6 < M-B < 11.3) are those galaxies which were described recently by Drinkwater et al. and labelled 'ultracompact dwarfs' (UCDs). A major result is that the conventional dwarfs all have scale sizes alpha greater than or similar to 3 arcsec (similar or equal to300 pc). This apparent minimum scale size implies an equivalent minimum luminosity for a dwarf of a given surface brightness. This produces a limit on their distribution in the magnitude-surface brightness plane, such that we do not observe dEs with high surface brightnesses but faint absolute magnitudes. Above this observed minimum scale size of 3 arcsec, the dEs and dS0s fill the whole area of the magnitude-surface brightness plane sampled by our selection limits. The observed correlation between magnitude and surface brightness noted by several recent studies of brighter galaxies is not seen with our fainter cluster sample. A comparison of our results with the Fornax Cluster Catalog (FCC) of Ferguson illustrates that attempts to determine cluster membership solely on the basis of observed morphology can produce significant errors. The FCC identified 17 of the 24 FCSS sample (i.e. 71 per cent) as being 'cluster' members, in particular missing all five of the UCDs. The FCC also suffers from significant contamination: within the FCSS's field and selection limits, 23 per cent of those objects described as cluster members by the FCC are shown by the FCSS to be background objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the evidence that the ultra-compact dwarf (UCD) galaxies we recently discovered in the Fornax Cluster form a new, previously unknown class of galaxies and we discuss possible scenarios for their formation. We then present recent results that UCDs are also present in the Virgo Cluster, and that there is a much larger than expected population of fainter UCDs in the Fornax Cluster. The size and properties of this population may lead us to revise our original 'galaxy threshing' hypothesis for the formation of UCDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of our wide-field redshift survey of galaxies in a 285 square degree region of the Shapley Supercluster (SSC), based on a set of 10 529 velocity measurements (including 1201 new ones) on 8632 galaxies obtained from various telescopes and from the literature. Our data reveal that the main plane of the SSC (v approximate to 14 500 km s(-1)) extends further than previous estimates, filling the whole extent of our survey region of 12 degrees by 30 degrees on the sky (30 x 75 h(-1) Mpc). There is also a connecting structure associated with the slightly nearer Abell 3571 cluster complex (v approximate to 12 000 km s(-1)). These galaxies seem to link two previously identified sheets of galaxies and establish a connection with a third one at v = 15 000 km s(-1) near RA = 13(h). They also tend to fill the gap of galaxies between the foreground Hydra-Centaurus region and the more distant SSC. In the velocity range of the Shapley Supercluster (9000 km s(-1) < cz < 18 000 km s(-1)), we found redshift-space overdensities with b(j) < 17.5 of similar or equal to 5.4 over the 225 square degree central region and similar or equal to 3.8 in a 192 square degree region excluding rich clusters. Over the large region of our survey, we find that the intercluster galaxies make up 48 per cent of the observed galaxies in the SSC region and, accounting for the different completeness, may contribute nearly twice as much mass as the cluster galaxies. In this paper, we discuss the completeness of the velocity catalogue, the morphology of the supercluster, the global overdensity, and some properties of the individual galaxy clusters in the Supercluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster have discovered several ultracompact dwarf galaxies with intrinsic sizes of similar to 100 pc and absolute B-band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultracompact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of similar to 10(8) M.. These results suggest that ultracompact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By utilizing the large multiplexing advantage of the Two-degree Field spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5 < b(j) < 19.7 regardless of morphology, in an area toward the center of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets, we have found five objects that are actually at the redshift of the Fornax Cluster; i.e., they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption-line spectra. With intrinsic sizes of less than 1.1 HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this paper we present new ground-based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf elliptical galaxies. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the 2dF spectrograph on the Anglo-Australian Telescope to obtain a complete spectroscopic sample of all objects in the magnitude range, 16.5 < bj < 19.8, regardless of morphology, in an area centred on the Fornax Cluster of galaxies. Among the unresolved targets are five objects which are members of the Fornax Cluster. They are extremely compact stellar systems with scale lengths less than 40 parsecs. These ultra-compact dwarfs are unlike any known type of stellar system, being more compact and significantly less luminous than other compact dwarf galaxies, yet much brighter than any globular cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have discovered a new type of galaxy in the Fornax Cluster: 'ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or 'threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters.