56 resultados para GIS modeling
em University of Queensland eSpace - Australia
Resumo:
Land related information about the Earth's surface is commonIJ found in two forms: (1) map infornlation and (2) satellite image da ta. Satellite imagery provides a good visual picture of what is on the ground but complex image processing is required to interpret features in an image scene. Increasingly, methods are being sought to integrate the knowledge embodied in mop information into the interpretation task, or, alternatively, to bypass interpretation and perform biophysical modeling directly on derived data sources. A cartographic modeling language, as a generic map analysis package, is suggested as a means to integrate geographical knowledge and imagery in a process-oriented view of the Earth. Specialized cartographic models may be developed by users, which incorporate mapping information in performing land classification. In addition, a cartographic modeling language may be enhanced with operators suited to processing remotely sensed imagery. We demonstrate the usefulness of a cartographic modeling language for pre-processing satellite imagery, and define two nerv cartographic operators that evaluate image neighborhoods as post-processing operations to interpret thematic map values. The language and operators are demonstrated with an example image classification task.
Resumo:
As part of ACIAR project ASEM/2003/052, Improving Financial Returns to Smallholder Tree Farmers in the Philippines, plantations of timber trees in Leyte Island, the Philippines were located using a systematic survey of the island. The survey was undertaken in order to compile a database of plantations which could be used to guide the planning of project activities. In addition to recording a range of qualitative and quantitative information for each plantation, the survey spatially referenced each site using a Global Positioning System (GPS) to electronic maps of the island which were held in a Geographical Information System (GIS). Microsoft Excel and Mapsource® software were used as the software links between GPS coordinates and the GIS. Mapping of farm positions was complicated by different datums being used for maps of Leyte Island and this caused GPS positions to be displaced from equivalent positions on the map. Photos of the sites were hyperlinked to their map positions in the GIS in order to assist staff to recall site characteristics.
Resumo:
A Geographic Information System (GIS) was used to model datasets of Leyte Island, the Philippines, to identify land which was suitable for a forest extension program on the island. The datasets were modelled to provide maps of the distance of land from cities and towns, land which was a suitable elevation and slope for smallholder forestry and land of various soil types. An expert group was used to assign numeric site suitabilities to the soil types and maps of site suitability were used to assist the selection of municipalities for the provision of extension assistance to smallholders. Modelling of the datasets was facilitated by recent developments of the ArcGIS® suite of computer programs and derivation of elevation and slope was assisted by the availability of digital elevation models (DEM) produced by the Shuttle Radar Topography (SRTM) mission. The usefulness of GIS software as a decision support tool for small-scale forestry extension programs is discussed.
Resumo:
The area of private land suitable and available for growing hoop pine (Araucaria cunninghamii) on the Atherton Tablelands in North Queensland was modelled using a geographic information system (GIS). In Atherton, Eacham and Herberton shires, approximately 64,700 ha of privately owned land were identified as having a mean annual rainfall and soil type similar to Forestry Plantations Queensland (FPQ) hoop pine growth plots with an approximate growth rate of 20 m3 per annum. Land with slope of over 25° and land covered with native vegetation were excluded in the estimation. If land which is currently used for high-value agriculture is also excluded, the net area of land potentially suitable and available for expansion of hoop pine plantations is approximately 22,900 ha. Expert silvicultural advice emphasized the role of site preparation and weed control in affecting the long-term growth rate of hoop pine. Hence, sites with less than optimal fertility and rainfall may be considered as being potentially suitable for growing hoop pine at a lower growth rate. The datasets had been prepared at various scales and differing precision for their description of land attributes. Therefore, the results of this investigation have limited applicability for planning at the individual farm level but are useful at the regional level to target areas for plantation expansion.
Resumo:
Business process design is primarily driven by process improvement objectives. However, the role of control objectives stemming from regulations and standards is becoming increasingly important for businesses in light of recent events that led to some of the largest scandals in corporate history. As organizations strive to meet compliance agendas, there is an evident need to provide systematic approaches that assist in the understanding of the interplay between (often conflicting) business and control objectives during business process design. In this paper, our objective is twofold. We will firstly present a research agenda in the space of business process compliance, identifying major technical and organizational challenges. We then tackle a part of the overall problem space, which deals with the effective modeling of control objectives and subsequently their propagation onto business process models. Control objective modeling is proposed through a specialized modal logic based on normative systems theory, and the visualization of control objectives on business process models is achieved procedurally. The proposed approach is demonstrated in the context of a purchase-to-pay scenario.
Resumo:
Ex vivo hematopoiesis is increasingly used for clinical applications. Models of ex vivo hematopoiesis are required to better understand the complex dynamics and to optimize hematopoietic culture processes. A general mathematical modeling framework is developed which uses traditional chemical engineering metaphors to describe the complex hematopoietic dynamics. Tanks and tubular reactors are used to describe the (pseudo-) stochastic and deterministic elements of hematopoiesis, respectively. Cells at any point in the differentiation process can belong to either an immobilized, inert phase (quiescent cells) or a mobile, active phase (cycling cells). The model describes five processes: (1) flow (differentiation), (2) autocatalytic formation (growth),(3) degradation (death), (4) phase transition from immobilized to mobile phase (quiescent to cycling transition), and (5) phase transition from mobile to immobilized phase (cycling to quiescent transition). The modeling framework is illustrated with an example concerning the effect of TGF-beta 1 on erythropoiesis. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A new model proposed for the gasification of chars and carbons incorporates features of the turbostratic nanoscale structure that exists in such materials. The model also considers the effect of initial surface chemistry and different reactivities perpendicular to the edges and to the faces of the underlying crystallite planes comprising the turbostratic structure. It may be more realistic than earlier models based on pore or grain structure idealizations when the carbon contains large amounts of crystallite matter. Shrinkage of the carbon particles in the chemically controlled regime is also possible due to the random complete gasification of crystallitic planes. This mechanism can explain observations in the literature of particle size reduction. Based on the model predictions, both initial surface chemistry and the number of stacked planes in the crystallites strongly influence the reactivity and particle shrinkage. Its test results agree well with literature data on the air-oxidation of Spherocarb and show that it accurately predicts the variation of particle size with conversion. Model parameters are determined entirely from rate measurements.
Resumo:
An extension of the Adachi model with the adjustable broadening function, instead of the Lorentzian one, is employed to model the optical constants of GaP, InP, and InAs. Adjustable broadening is modeled by replacing the damping constant with the frequency-dependent expression. The improved flexibility of the model enables achieving an excellent agreement with the experimental data. The relative rms errors obtained for the refractive index equal 1.2% for GaP, 1.0% for InP, and 1.6% for InAs. (C) 1999 American Institute of Physics. [S0021-8979(99)05807-7].
Resumo:
An analytical approach to the stress development in the coherent dendritic network during solidification is proposed. Under the assumption that stresses are developed in the network as a result of the friction resisting shrinkage-induced interdendritic fluid flow, the model predicts the stresses in the solid. The calculations reflect the expected effects of postponed dendrite coherency, slower solidification conditions, and variations of eutectic volume fraction and shrinkage. Comparing the calculated stresses to the measured shear strength of equiaxed mushy zones shows that it is possible for the stresses to exceed the strength, thereby resulting in reorientation or collapse of the dendritic network.
Resumo:
The extension of Adachi's model with a Gaussian-like broadening function, in place of Lorentzian, is used to model the optical dielectric function of the alloy AlxGa1-xAs. Gaussian-like broadening is accomplished by replacing the damping constant in the Lorentzian line shape with a frequency dependent expression. In this way, the comparative simplicity of the analytic formulas of the model is preserved, while the accuracy becomes comparable to that of more intricate models, and/or models with significantly more parameters. The employed model accurately describes the optical dielectric function in the spectral range from 1.5 to 6.0 eV within the entire alloy composition range. The relative rms error obtained for the refractive index is below 2.2% for all compositions. (C) 1999 American Institute of Physics. [S0021-8979(99)00512-5].
Resumo:
Application of geographic information system (GIS) and global positioning system (GPS) technology in the Hlabisa community-based tuberculosis treatment programme documents the increase in accessibility to treatment after the expansion of the service from health facilities to include community workers and volunteers.
Resumo:
Optical constants of AlSb, GaSb, and InSb are modeled in the 1-6 eV spectral range. We employ an extension of Adachi's model of the optical constants of semiconductors. The model takes into account transitions at E-0, E-0 + Delta(0), E-1, and E-1 + Delta(1) critical points, as well as higher-lying transitions which are modeled with three damped harmonic oscillators. We do not consider indirect transitions contribution, since it represents a second-order perturbation and its strength should be low. Also, we do not take into account excitonic effects at E-1, E-1 + Delta(1) critical points, since we model the room temperature data. In spite of fewer contributions to the dielectric function compared to previous calculations involving Adachi's model, our calculations show significantly improved agreement with the experimental data. This is due to the two main distinguishing features of calculations presented here: use of adjustable line broadening instead of the conventional Lorentzian one, and employment of a global optimization routine for model parameter determination.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.