19 resultados para GASES

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of nitrogen, argon, methane, and carbon dioxide on activated carbon Norit R1 over a wide range of pressure (up to 50 MPa) at temperatures from 298 to 343 K (supercritical conditions) is analyzed by means of the density functional theory modified by incorporating the Bender equation of state, which describes the bulk phase properties with very high accuracy. It has allowed us to precisely describe the experimental data of carbon dioxide adsorption slightly above and below its critical temperatures. The pore size distribution (PSD) obtained with supercritical gases at ambient temperatures compares reasonably well with the PSD obtained with subcritical nitrogen at 77 K. Our approach does not require the skeletal density of activated carbon from helium adsorption measurements to calculate excess adsorption. Instead, this density is treated as a fitting parameter, and in all cases its values are found to fall into a very narrow range close to 2000 kg/m(3). It was shown that in the case of high-pressure adsorption of supercritical gases the PSD could be reliably obtained for the range of pore width between 0.6 and 3 run. All wider pores can be reliably characterized only in terms of surface area as their corresponding excess local isotherms are the same over a practical range of pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine here the relative importance of different contributions to transport of light gases in single walled carbon nanotubes, using methane and hydrogen as examples. Transport coefficients at 298 K are determined using molecular dynamics simulation with atomistic models of the nanotube wall, from which the diffusive and viscous contributions are resolved using a recent approach that provides an explicit expression for the latter. We also exploit an exact theory for the transport of Lennard-Jones fluids at low density considering diffuse reflection at the tube wall, thereby permitting the estimation of Maxwell coefficients for the wall reflection. It is found that reflection from the carbon nanotube wall is nearly specular, as a result of which slip flow dominates, and the viscous contribution is small in comparison, even for a tube as large as 8.1 nm in diameter. The reflection coefficient for hydrogen is 3-6 times as large as that for methane in tubes of 1.36 nm diameter, indicating less specular reflection for hydrogen and greater sensitivity to atomic detail of the surface. This reconciles results showing that transport coefficients for hydrogen and methane, obtained in simulation, are comparable in tubes of this size. With increase in adsorbate density, the reflection coefficient increases, suggesting that adsorbate interactions near the wall serve to roughen the local potential energy landscape perceived by fluid molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the effects of various potential models in the description of vapor–liquid equilibria (VLE) and adsorption of simple gases on highly graphitized thermal carbon black. It is found that some potential models proposed in the literature are not suitable for the description of VLE (saturated gas and liquid densities and the vapor pressure with temperature). Simple gases, such as neon, argon, krypton, xenon, nitrogen, and methane are studied in this paper. To describe the isotherms on graphitized thermal carbon black correctly, the surface mediation damping factor introduced in our recent publication should be used to calculate correctly the fluid–fluid interaction energy between particles close to the surface. It is found that the damping constant for the noble gases family is linearly dependent on the polarizability, suggesting that the electric field of the graphite surface has a direct induction effect on the induced dipole of these molecules. As a result of this polarization by the graphite surface, the fluid–fluid interaction energy is reduced whenever two particles are near the surface. In the case of methane, we found that the damping constant is less than that of a noble gas having the similar polarizability, while in the case of nitrogen the damping factor is much greater and this could most likely be due to the quadrupolar nature of nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the projected Gross-Pitaevskii equation formalism of Davis [Phys. Rev. Lett. 87, 160402 (2001)] to the experimentally relevant case of thermal Bose gases in harmonic potentials and outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of the harmonically trapped three-dimensional projected Gross-Pitaevskii equation at finite temperature and consider the dependence of condensate fraction, position, and momentum distributions and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high-energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this nonequilibrium situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and bare Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T-c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor Z(m) of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T-c. Our many-body calculations of Z(m) agree qualitatively well with recent measurments of the gas of Li-6 atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze photoionization and ion detection as a means of accurately counting ultracold atoms. We show that it is possible to count clouds containing many thousands of atoms with accuracies better than N-1/2 with current technology. This allows the direct probing of sub-Poissonian number statistics of atomic samples. The scheme can also be used for efficient single-atom detection with high spatiotemporal resolution. All aspects of a realistic detection scheme are considered, and we discuss experimental situations in which such a scheme could be implemented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the truncated Wigner method to the process of three-body recombination in ultracold Bose gases. We find that within the validity regime of the Wigner truncation for two-body scattering, three-body recombination can be treated using a set of coupled stochastic differential equations that include diffusion terms, and can be simulated using known numerical methods. As an example we investigate the behavior of a simple homogeneous Bose gas, finding a very slight increase of the loss rate compared to that obtained by using the standard method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exhange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about I bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.