3 resultados para GAS-SOURCE MBE

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the microbial competition observed in enhanced biological phosphorus removal (EBPR) systems, an undesirable group of micro-organisms known as glycogen-accumulating organisms (GAOs) compete for carbon in the anaerobic period with the desired polyphosphate-accumulating organisms (PAOs). Some studies have suggested that a propionate carbon source provides PAOs with a competitive advantage over GAOs in EBPR systems; however, the metabolism of GAOs with this carbon source has not been previously investigated. In this study, GAOs were enriched in a laboratory-scale bioreactor with propionate as the sole carbon source, in an effort to better understand their biochemical processes. Based on comprehensive solid-, liquid- and gas-phase chemical analytical data from the bioreactor, a metabolic model was proposed for the metabolism of propionate by GAOs. The model adequately described the anaerobic stoichiometry observed through chemical analysis, and can be a valuable tool for further investigation of the competition between PAOs and GAOs, and for the optimization of the EBPR process. A group of Alphaproteobacteria dominated the biomass (96% of Bacteria) from this bioreactor, while post-fluorescence in situ hybridization (FISH) chemical staining confirmed that these Alphaproteobacteria produced poly-beta-hydroxyalkanoates (PHAs) anaerobically and utilized them aerobically, demonstrating that they were putative GAOs. Some of the Alphaproteobacteria were related to Defluvicoccus vanus (16% of Bacteria), but the specific identity of many could not be determined by FISH. Further investigation into the identity of other GAOs is necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented was conducted within the scope of a larger study investigating impacts of the Stuart Oil Shale project, a facility operating to the north of the industrial city of Gladstone, Australia. The aims of the investigations were threefold: (a) the identification of the plant signatures in terms of particle size distributions in the submicrometer range (13-830 nm) through stack measurements, (b) exploring the applicability of these signatures in tracing the source contributions at locations of interest, at a distance from the plant, and (c) assessing the contribution of the plant to the total particle number concentration at locations of interest. The stack measurements conducted for three different conditions of plant operation showed that the particle size distributions were bimodal with average modal count median diameters (CMDs) of 24 (SD 4) and 52 (SD 9) nm. The average of all the particle size distributions recorded within the plant sector at a site located 4.5 km from the plant, over the sampling period when the plant was operating, also showed a bimodal distribution. The modal CMDs in this case were 27 and 50 nm, similar to those at the stack. This bimodal size distribution is distinct from the size distribution of the most common ambient anthropogenic emission source, which is vehicle emissions, and can be considered as a signature of this source. The average contribution of the plant (for plant sector winds) was estimated to be (10.0 +/- 3.8) x 10(2) particles cm(-3) and constituted approximately a 50% increase over the local particle ambient concentration for plant sector winds. This increase in particle number concentration compared to the local background concentration, while high compared to the clean environment concentration, is not significant when compared to concentrations generally encountered in the urban environment of Brisbane.