16 resultados para Fuzzy KNN

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE STORY OF HOW FEATHERS EVOLVED IS FAR FROM OVER. IN 1868, THOMAS HUXLEY declared that dinosaurs gave rise to birds. He based his claim on Compsognathus, a 150-million-year-old dinosaur fossil from Solnhofen, Germany, whose delicate hind legs were remarkably similar to those of table fowl. The discovery seven years earlier of Archaeopteryx, a fossil bird with a long bony tail, toothed jaws and clawed fingers, had convinced many people that birds were somehow related to reptiles. But Compsognathus was the fossil that placed dinosaurs firmly in the middle of this complex evolutionary equation. Wings, claimed Huxley, must have grown out of rudimentary forelimbs. And feathers? Whether Compsognathus had them, Huxley could only guess. Nevertheless, his theory clearly required that scales had somehow transformed into feathers. The question was not just how, but why?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of geo-information from multiple sources and of diverse nature in developing mineral favourability indexes (MFIs) is a well-known problem in mineral exploration and mineral resource assessment. Fuzzy set theory provides a convenient framework to combine and analyse qualitative and quantitative data independently of their source or characteristics. A novel, data-driven formulation for calculating MFIs based on fuzzy analysis is developed in this paper. Different geo-variables are considered fuzzy sets and their appropriate membership functions are defined and modelled. A new weighted average-type aggregation operator is then introduced to generate a new fuzzy set representing mineral favourability. The membership grades of the new fuzzy set are considered as the MFI. The weights for the aggregation operation combine the individual membership functions of the geo-variables, and are derived using information from training areas and L, regression. The technique is demonstrated in a case study of skarn tin deposits and is used to integrate geological, geochemical and magnetic data. The study area covers a total of 22.5 km(2) and is divided into 349 cells, which include nine control cells. Nine geo-variables are considered in this study. Depending on the nature of the various geo-variables, four different types of membership functions are used to model the fuzzy membership of the geo-variables involved. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The texture segmentation techniques are diversified by the existence of several approaches. In this paper, we propose fuzzy features for the segmentation of texture image. For this purpose, a membership function is constructed to represent the effect of the neighboring pixels on the current pixel in a window. Using these membership function values, we find a feature by weighted average method for the current pixel. This is repeated for all pixels in the window treating each time one pixel as the current pixel. Using these fuzzy based features, we derive three descriptors such as maximum, entropy, and energy for each window. To segment the texture image, the modified mountain clustering that is unsupervised and fuzzy c-means clustering have been used. The performance of the proposed features is compared with that of fractal features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an innovative approach for signature verification and forgery detection based on fuzzy modeling. The signature image is binarized and resized to a fixed size window and is then thinned. The thinned image is then partitioned into a fixed number of eight sub-images called boxes. This partition is done using the horizontal density approximation approach. Each sub-image is then further resized and again partitioned into twelve further sub-images using the uniform partitioning approach. The features of consideration are normalized vector angle (α) from each box. Each feature extracted from sample signatures gives rise to a fuzzy set. Since the choice of a proper fuzzification function is crucial for verification, we have devised a new fuzzification function with structural parameters, which is able to adapt to the variations in fuzzy sets. This function is employed to develop a complete forgery detection and verification system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a new scheme for off-line recognition of multi-font numerals using the Takagi-Sugeno (TS) model. In this scheme, the binary image of a character is partitioned into a fixed number of sub-images called boxes. The features consist of normalized vector distances (gamma) from each box. Each feature extracted from different fonts gives rise to a fuzzy set. However, when we have a small number of fonts as in the case of multi-font numerals, the choice of a proper fuzzification function is crucial. Hence, we have devised a new fuzzification function involving parameters, which take account of the variations in the fuzzy sets. The new fuzzification function is employed in the TS model for the recognition of multi-font numerals.