219 resultados para Fuzzy Inference Systems

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the unique collection of additional features of Qu-Prolog, a variant of the Al programming language Prolog, and illustrates how they can be used for implementing DAI applications. By this we mean applications comprising communicating information servers, expert systems, or agents, with sophisticated reasoning capabilities and internal concurrency. Such an application exploits the key features of Qu-Prolog: support for the programming of sound non-clausal inference systems, multi-threading, and high level inter-thread message communication between Qu-Prolog query threads anywhere on the internet. The inter-thread communication uses email style symbolic names for threads, allowing easy construction of distributed applications using public names for threads. How threads react to received messages is specified by a disjunction of reaction rules which the thread periodically executes. A communications API allows smooth integration of components written in C, which to Qu-Prolog, look like remote query threads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The small sample performance of Granger causality tests under different model dimensions, degree of cointegration, direction of causality, and system stability are presented. Two tests based on maximum likelihood estimation of error-correction models (LR and WALD) are compared to a Wald test based on multivariate least squares estimation of a modified VAR (MWALD). In large samples all test statistics perform well in terms of size and power. For smaller samples, the LR and WALD tests perform better than the MWALD test. Overall, the LR test outperforms the other two in terms of size and power in small samples.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fault diagnosis has become an important component in intelligent systems, such as intelligent control systems and intelligent eLearning systems. Reiter's diagnosis theory, described by first-order sentences, has been attracting much attention in this field. However, descriptions and observations of most real-world situations are related to fuzziness because of the incompleteness and the uncertainty of knowledge, e. g., the fault diagnosis of student behaviors in the eLearning processes. In this paper, an extension of Reiter's consistency-based diagnosis methodology, Fuzzy Diagnosis, has been proposed, which is able to deal with incomplete or fuzzy knowledge. A number of important properties of the Fuzzy diagnoses schemes have also been established. The computing of fuzzy diagnoses is mapped to solving a system of inequalities. Some special cases, abstracted from real-world situations, have been discussed. In particular, the fuzzy diagnosis problem, in which fuzzy observations are represented by clause-style fuzzy theories, has been presented and its solving method has also been given. A student fault diagnostic problem abstracted from a simplified real-world eLearning case is described to demonstrate the application of our diagnostic framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These are the full proceedings of the conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSS membranes are a good candidate for CO cleanup in fuel cell fuel processing systems due to their ability to selectively permeate H2 over CO via molecular sieving. Successfully scaled up tubular membranes were stable under dry conditions to 400°C with H2 permeance as high as 2 x 10-6 mol.m-2.s^-1.Pa^-1 at 200 degrees C and H2/CO selectivity up to 6.4, indicating molecular sieving was the dominant mechanism. A novel carbonised template molecular sieve silica (CTMSS) technology gave the scaled up membranes resilience in hydrothermal conditions up to 400 degrees C in 34% steam and synthetic reformate, which is required for use in fuel cell CO cleanup systems.