16 resultados para Fusión vertebral
em University of Queensland eSpace - Australia
Resumo:
Postmenopausal Caucasian women aged less than 80 years (n = 99) with one or more atraumatic vertebral fracture and no hip fractures, were treated by cyclical administration of enteric coated sodium fluoride (NaF) or no NaF for 27 months, with precautions to prevent excessive stimulation of bone turnover. In the first study 65 women, unexposed to estrogen (-E study), age 70.8 +/- 0.8 years (mean SEM) were all treated with calcium (Ca) 1.0-1.2 g daily and ergocalciferol (D) 0.25 mg per 25 kg once weekly and were randomly assigned to cyclical NaF (6 months on. 3 months off, initial dose 60 mg/day; group F CaD, n = 34) or no NaF (group CaD, n = 3 1). In the second study 34 patients. age 65.5 +/- 1.2 years, on hormone replacement therapy (E) at baseline, had this standardized, and were all treated with Ca and D and similarly randomized (FE CaD, n = 17, E CaD, n = 17) (+E study). The patients were stratified according to E status and subsequently assigned randomly to NaF. Seventy-five patients completed the trial. Both groups treated with NaF showed an increase in lumbar spinal density (by DXA) above baseline by 27 months: FE CaD + 16.2% and F CaD +9.3% (both p = 0.0001). In neither group CaD nor E CaD did lumbar spinal density increase. Peripheral bone loss occurred at most sites in the F CaD group at 27 months: tibia/fibula shaft -7.3% (p = 0.005); femoral shaft -7.1% (p = 0.004); distal forearm -4.0% (p = 0.004); total hip -4.1% (p = 0. 003); and femoral neck -3.5% (p = 0.006). No significant loss occurred in group FE CaD. Differences between the two NaF groups were greatest at the total hip at 27 months but were not significant [p < 0.05; in view of the multiple bone mineral density (BMD) sites, an alpha of 0.01 was employed to denote significance in BMD changes throughout this paper]. Using Cox's proportional hazards model, in the -E study there were significantly more patients with first fresh vertebral fractures in those treated with NaF than in those not so treated (RR = 24.2, p = 0.008, 95% CI 2.3-255). Patients developing first fresh fractures in the first 9 months were markedly different between groups: -23% of F CaD, 0 of CaD, 29% of FE CaD and 0 of E CaD. The incidence of incomplete (stress) fractures was similar in the two NaF-treated groups. Complete nonvertebral fractures did not occur in the two +E groups, there were no differences between groups F CaD and CaD. Baseline BMD (spine and femoral neck) was related to incident vertebral fractures in the control groups (no NaF), but not in the two NaF groups. Our results and a literature review indicate that fluoride salts. if used, should be at low dosage, with pretreatment and co-treatment with a bone resorption inhibitor.
Resumo:
We report a prospective, randomized, multi-center, open-label 2-year trial of 81 postmenopausal women aged 53-79 years with at least one minimal-trauma vertebral fracture (VF) and low (T-score below 2) lumbar bone mineral density (BMD). Group HRT received piperazine estrone sulfate (PES) 0.625 - 1.25 mg/d +/- medroxyprogesterone acetate (MPA) 2.5 - 5 mg/d,- group HRT/D received HRT plus calcitriol 0.25 mug bd. All with a baseline dietary calcium (Ca) of < I g/d received Ca carbonate 0.6 g nocte. Final data were on 66 - 70 patients. On HRT/D, significant (P < 0.001) BNID increases from baseline by DXA were at total body - head, trochanter, Ward's, total hip, inter-trochanter and femoral shaft (% group mean Delta 4.2, 6.1, 9.3. 3.7. 3.3 and 3.3%, respectively). On HRT, at these significant Deltas were restricted to the trochanter and sites. si Wards. Significant advantages of HRT/D over HRT were in BMD of total body (- head), total hip and trochanter (all P = 0.01). The differences in mean Delta at these sites were 1.3, 2.6 and 3.9%. At the following, both groups Improved significantly -lumbar spine (AP and lateral), forearm shaft and ultradistal tibia/fibula. The weightbearing, site - specific benefits of the combination associated with significant suppression of parathyroid hormone-suggest a beneficial effect on cortical bone. Suppression of bone turnover was significantly greater on HRT/D (serum osteocalcin P = 0.024 and urinary hydroxyproline/creatinine ratio P = 0.035). There was no significant difference in the number of patients who developed fresh VFs during the trial (HRT 8/36, 22%; HRT/D 4/34, 12% - intention to treat); likewise in the number who developed incident nonvertebral fractures. This Is the first study comparing the 2 treatments in a fracture population. The results indicate a significant benefit of calcitriol combined with HRT on total body BMD and on BNID at the hip, the major site of osteoporotic fracture.
Resumo:
Study Design. Development of an automatic measurement algorithm and comparison with manual measurement methods. Objectives. To develop a new computer-based method for automatic measurement of vertebral rotation in idiopathic scoliosis from computed tomography images and to compare the automatic method with two manual measurement techniques. Summary of Background Data. Techniques have been developed for vertebral rotation measurement in idiopathic scoliosis using plain radiographs, computed tomography, or magnetic resonance images. All of these techniques require manual selection of landmark points and are therefore subject to interobserver and intraobserver error. Methods. We developed a new method for automatic measurement of vertebral rotation in idiopathic scoliosis using a symmetry ratio algorithm. The automatic method provided values comparable with Aaro and Ho's manual measurement methods for a set of 19 transverse computed tomography slices through apical vertebrae, and with Aaro's method for a set of 204 reformatted computed tomography images through vertebral endplates. Results. Confidence intervals (95%) for intraobserver and interobserver variability using manual methods were in the range 5.5 to 7.2. The mean (+/- SD) difference between automatic and manual rotation measurements for the 19 apical images was -0.5 degrees +/- 3.3 degrees for Aaro's method and 0.7 degrees +/- 3.4 degrees for Ho's method. The mean (+/- SD) difference between automatic and manual rotation measurements for the 204 endplate images was 0.25 degrees +/- 3.8 degrees. Conclusions. The symmetry ratio algorithm allows automatic measurement of vertebral rotation in idiopathic scoliosis without intraobserver or interobserver error due to landmark point selection.
Resumo:
The aim of this research is to determine the effects of constraining the horizontal distance of the feet from the load on the posture adopted at the start of the lift. Kinematic data were collected while each of 24 subjects lifted 3, 6, and 9 kg loads from a starting height 18 cm above the ground. The position of the feet was controlled relative to the load such that the horizontal distance from the hand to the ankle at the start of extension was either 20, 40, or 60 cm. Subjects performed 20 trials in each of six combinations of load and ankle-load distance chosen to provide three sets of equivilent load moment pairs. The initial horizontal distance from the load to the ankle had a large influence on the posture adopted to lift the load. Ankle and knee flexion, in particular, were reduced when the ankle-load distance was smaller, and particularly so when the distance was reduced to 20 cm. Hip flexion was reduced to a smaller extent, while lumbar vertebral flexion remained relatively unchanged. The inclination of the trunk at the start of the lift was unchanged when the ankle-load distance was 60 or 40 cm, but was 10 degrees greater when the load was 20 cm from the ankles, indicating that subjects adopted a posture closer to a stoop when the ankle-load distance was small. Comparison of conditions of equal load moment (but different load mass and ankle-load distance) revealed differences which mirrored the effects of ankle-load distance alone, suggesting that the effects of ankle-load distance on the posture adopted at the start of extension were largely independent of the load moment. While the forces and torques required to lift a load must be to some extent dependent on the load moment, rather than load or ankle-load distance per se, the posture adopted to lift the load is not.
Resumo:
In a randomized trial involving 71 postmenopausal osteoporotic women with vertebral compression fractures, radiocalcium absorption studies using the Ca-45 single isotope method (alpha) were performed at baseline and after 8 months of treatment with either continuous combined hormone replacement therapy (HRT, as piperazine estrone sulfate 0.625-0.937mg daily +/- medroxyprogesterone acetate 2.5 mg daily depending on uterine status) or HRT plus calcitriol 0.25 mu g twice daily. A calcium supplement of 600 mg nocte was given to only those women who had a daily calcium intake of less than 1 g per day at baseline, as assessed by recalled dietary intake. There was a significant decrease 0.74 (+/- 0.35 SD) to 0.58 (+/- 0.22), Delta alpha = -0.17 (+/- 0.26), p<0.0005] in alpha at 8 months compared with baseline in the HRT-treated group, but a significant increase [0.68 (+/- 0.31) to 0.84 (+/- 0.27), Delta alpha = +0.16 (+/- 0.30), p<0.003] in the HRT-plus-calcitriol treated patients, resulting in alpha being significantly higher after 8 months in the latter group than in the HRT-only group. Although 72% of the patients had been supplemented with calcium between the first and second studies, separate analyses revealed that the change in calcium intake had not affected the result. Further breakdown of the groups into baseline 'normal' absorbers (alpha greater than or equal to 0.55) and 'malabsorbers' (alpha <0.55) revealed that alpha decreased with HRT treatment only in the normal absorbers, and remained stable in the malabsorbers. Conversely, following HRT plus calcitriol treatment, alpha increased only in the malabsorbers, the normal absorbers in this group remaining unchanged. In conclusion, our data show that HRT, of the type and dose used in this study, did not produce an increase in absorption efficiency; it was in fact associated with a fall. increased absorption efficiency cannot be achieved unless calcitriol is used concurrently, and then only in patients with malabsorption. Calcitriol also had a significant effect in normal absorbers in that it prevented the decline in alpha seen with HRT alone, and thus should be considered in all patients with postmenopausal osteoporosis treated with HRT.
Resumo:
In humans, intra-abdominal pressure (IAP) is elevated during many everyday activities. This experiment aimed to investigate the extent to which increased IAP-without concurrent activity of the abdominal or back extensor muscles-produces an extensor torque. With subjects positioned in side lying on a swivel table with its axis at L3, moments about this vertebral level were measured when IAP was transiently increased by electrical stimulation of the diaphragm via the phrenic nerve. There was no electromyographic activity in abdominal and back extensor muscles. When IAP was increased artificially to similar to 15% of the maximum IAP amplitude that could be generated voluntarily with the trunk positioned in flexion, a trunk extensor moment (similar to6 Nm) was recorded. The size of the effect was proportional to the increase in pressure. The extensor moment was consistent with that predicted from a model based on measurements of abdominal cross-sectional area and IAP moment arm. When IAP was momentarily increased while the trunk was flexed passively at a constant velocity, the external torque required to maintain the velocity was increased. These results provide the first in vivo data of the amplitude of extensor moment that is produced by increased IAP. Although the net effect of this extensor torque in functional tasks would be dependent on the muscles used to increase the IAP and their associated flexion torque, the data do provide evidence that IAP contributes, at least in part, to spinal stability. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We recently demonstrated that suppressed bone remodeling allows microdamage to accumulate and causes reductions in some mechanical properties. However, in our previous study, I year treatment with high-dose etidronate (EHDP) did not increase microdamage accumulation in most skeletal sites of dogs in spite of complete remodeling suppression and the occurrence of spontaneous fractures of ribs and/or thoracic spinous processes. This study evaluates the effects of EHDP on microdamage accumulation and biomechanical properties before fractures occur. Thirty-six female beagles, 1-2 years old, were treated daily for 7 months with subcutaneous injections of saline vehicle (CNT) or EHDP at 0.5 (E-low) or 5 mg/kg per day (E-high). After killing, bone mineral measurement, histomorphometry, microdamage analysis, and biomechanical testing were performed. EHDP treatment suppressed intracortical and trabecular remodeling by 60%-75% at the lower dose, and by 100% at the higher dose. Osteoid accumulation caused by a mineralization deficit occurred only in the E-high group, and this led to a reduction of mineralized bone mass. Microdamage accumulation increased significantly by two- to fivefold in the rib, lumbar vertebra, ilium, and thoracic spinous process in E-low, and by twofold in the lumbar vertebra and ilium in E-high. However, no significant increase in damage accumulation was observed in ribs or thoracic spinous processes in E-high where fractures occur following 12 months of treatment. Mechanical properties of lumbar vertebrae and thoracic spinous processes were reduced significantly in both E-low and E-high. These findings suggest that suppression of bone remodeling by EHDP allows microdamage accumulation, but that osteoid accumulation reduces production of microdamage. (Bone 29:271-278; 2001) (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
We recently demonstrated that suppression of bone remodeling allows microdamage to accumulate, leading to reduced bone toughness in the rib cortex of dogs. This study evaluates the effects of reduced bone turnover produced by bisphosphonates on microdamage accumulation and biomechanical properties at clinically relevant skeletal sites in the same dogs. Thirty-six female beagles, 1-2 years old, were divided into three groups. The control group was treated daily for 12 months with saline vehicle (CNT), The remaining two groups were treated daily with risedronate at a dose of 0.5 mg/kg per day (RIS), or alendronate at 1.0 mg/kg per day (ALN) orally, The doses of these bisphosphonates were six times the clinical doses approved for treatment of osteoporosis in humans. After killing, the L-1 vertebra was scanned by dual-energy X-ray absorptiometry (DXA), and the L-2 vertebra and right ilium were assigned to histomorphometry, The L-3 vertebra, left ilium, Th-2 spinous process, and right femoral neck were used for microdamage analysis. The L-4 vertebra and Th-1 spinous process were mechanically tested to failure in compression and shear, respectively. One year treatment with risedronate or alendronate significantly suppressed trabecular remodeling in vertebrae (RIS 90%, ALN 95%) and ilium (RIS 76%, ALN 90%) without impairment of mineralization, and significantly increased microdamage accumulation in all skeletal sites measured. Trabecular bone volume and vertebral strength increased significantly following 12 month treatment. However, normalized toughness of the L-4 vertebra was reduced by 21% in both RIS (p = 0.06) and ALN (p = 0.05) groups. When the two bisphosphonate groups were pooled in a post hoc fashion for analysis, this reduction in toughness reached statistical significance (p = 0.02), This study demonstrates that suppression of trabecular bone turnover by high doses of bisphosphonates is associated with increased vertebral strength, even though there is significant microdamage accumulation and a reduction in the intrinsic energy absorption capacity of trabecular bone. (C) 2001 by Elsevier Science Inc. All rights reserved.
Resumo:
The basic morphology of the skeleton is determined genetically, but its final mass and architecture are modulated by adaptive mechanisms sensitive to mechanical factors. When subjected to loading, the ability of bones to resist fracture depends on their mass, material properties, geometry and tissue quality. The contribution of altered bone geometry to fracture risk is unappreciated by clinical assessment using absorptiometry because it fails to distinguish geometry and density. For example, for the same bone area and density, small increases in the diaphyseal radius effect a disproportionate influence on torsional strength of bone. Mechanical factors are clinically relevant because of their ability to influence growth, modeling and remodeling activities that can maximize, or maintain, the determinants of fracture resistance. Mechanical loads, greater than those habitually encountered by the skeleton, effect adaptations in cortical and cancellous bone, reduce the rate of bone turnover, and activate new bone formation on cortical and trabecular surfaces. In doing so, they increase bone strength by beneficial adaptations in the geometric dimensions and material properties of the tissue. There is no direct evidence to demonstrate anti-fracture efficacy for mechanical loading, but the geometric alterations engendered undoubtedly increase the structural properties of bone as an organ, increasing the resistance to fracture. Like all interventions, issues of safety also arise. Physical activities involving high strain rates, heavy lifting or impact loading may be detrimental to the joints, leading to osteoarthritis; may stimulate fatigue damage leading with some to stress fractures; or may interact pharmaceutical interventions to increase the rate of microdamage within cortical or trabecular bone.
Resumo:
Osteoporosis is a major public health problem for older women and men. Parathyroid hormone (PTH) (1-34), which produces similar biological activity to the parent hormone, was tested in postmenopausal women with prior vertebral fractures. In 18 months, PTH (1-34) caused a dramatic 65% decrease in the risk of new vertebral fractures with a 10% increase in bone mineral density with few side effects. PTH (1-34) represents an exciting new therapy for this high risk group.
Resumo:
The use of cervical manipulation presents concerns because of a risk of devastating side effects of trauma to the vertebral artery. Little is known about the frequency of use of cervical manipulation versus passive mobilisation by physiotherapists. A recent national, multi-centre randomised clinical trial of the physiotherapy management of cervicogenic headache provided an opportunity to gain an insight into practices of a sample of manipulative physiotherapists across Australia. The treatment records for the 100 subjects who received only manipulative therapy, or manipulative therapy with exercise as per the trial protocol, were audited. The results revealed that cervical manipulation was used in 20.2% of the 1090 treatments provided to these subjects but cervical joint mobilisation only was used in the vast majority of treatments (77.6%). Nevertheless, 42% of subjects were treated with cervical manipulation at some time. In most instances, manipulation was accompanied by passive mobilisation in the same treatment session. Patients were manipulated on one to six occasions and this occurred predominantly in the latter half of the 12-treatment program. Cervical manipulation was used less frequently in the group who also received exercise. The data suggest that the physiotherapists participating in this study used cervical manipulation selectively and relatively conservatively considering the high use of cervical mobilisation techniques. This may reflect their due regard to safety in the treatment of the cervical region.
Resumo:
This article reviews the empirical and theoretical bases for recommendations regarding lifting technique. Lifting from postures involving extreme lumbar vertebral flexion, (approximately 60degrees of lumbar flexion, characterised by absence of electromyographical activity in erector spinae) has the potential to contribute to damage to ligaments and intervertebral discs, especially if combined with lateral flexion or rotation. The only appropriate recommendation regarding posture of the lumbar spine during lifting is to avoid postures involving extreme lumbar vertebral flexion (and rotation and lateral flexion). There is no empirical basis for avoiding postures involving moderate lumbar vertebral flexion, and no justification for advocating lifting from a full squat posture. Further, lifting from semi-squat postures, involving a moderate range of flexion at both knees and trunk, allows a pattern of interjoint coordination which appears to be functional in reducing muscular effort. Lifting training is generally ineffective, and there is unlikely to be a single best technique which is appropriate in all situations. Consequently, it may be preferable to provide education in general lifting guidelines and assist lifters to discover individually appropriate postures and patterns of movement. The article concludes by presenting recommendations for lifting technique which are justified by current knowledge.