6 resultados para Fungal diseases

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans is a pathogen commonly infecting patients who receive immunosuppressive drug therapy, long-term catheterization, or those who suffer from acquired immune deficiency syndrome (AIDS). The major factor accountable for pathogenicity of C. albicans is host immune status. Various virulence molecules, or factors, of are also responsible for the disease progression. Virulence proteins are published in public databases but they normally lack detailed functional annotations. We have developed CandiVF, a specialized database of C. albicans virulence factors (http://antigen.i2r.a-star.edu.sg/Templar/DB/CandiVF/) to facilitate efficient extraction and analysis of data aimed to assist research on immune responses, pathogenesis, prevention, and control of candidiasis. CandiVF contains a large number of annotated virulence proteins, including secretory, cell wall-associated, membrane, cytoplasmic, and nuclear proteins. This database has in-built bioinformatics tools including keyword and BLAST search, visualization of 3D-structures, HLA-DR epitope prediction, virulence descriptors, and virulence factors ontology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult diamondback moths (DBM), Plutella xylostella L. (Lepidoptera: Plutellidae), inoculated with the fungus Zoophthora radicans, were released within a large field cage containing DBM-infested potted broccoli plants. Larvae and pupae on exposed and caged control plants were examined on five occasions over the next 48 days for evidence of Z. radicans infection. Infected larvae were first detected on exposed plants 4 days after the initial release of adults, and after 48 days the infection level reached 79%. Aerially borne conidia were a factor in transmission of the fungus. Infection had no effect on possible losses of larval and adult cadavers due to scavengers in field crops. In a trial to measure the influence of infection on dispersal, twice as many non-infected as infected males were recaptured in pheromone traps, although the difference in cumulative catch only became significant 3 days after release of the males. In a separate experiment, when adult moths were inoculated with Beauveria bassiana conidia and released into the field cage, DBM larvae collected from 37 of 96 plants sampled 4 days later subsequently died from B. bassiana infection. The distribution of plants from which the infected larvae were collected was random, but the distribution of infected larvae was clustered within the cage. These findings suggest that the auto-dissemination of fungal pathogens may be a feasible strategy for DBM control, provided that epizootics can be established and maintained when DBM population densities are low.