259 resultados para Function Learning
em University of Queensland eSpace - Australia
Resumo:
The lexical-semantic and syntactic abilities of a group of individuals with chronic nonthalamic subcortical (NS) lesions following stroke (n = 6) were investigated using the Western Aphasia Battery (WAB) picture description task [Kertesz, A. (1982). The Western aphasia battery. New York: Grune and Stratton] and compared with those of a group of subjects with Huntington's Disease (HD) (n = 6) and a nonneurologically impaired control group (n = 6) matched for age, sex, and educational level. The performance of the NS and HD subjects did not differ significantly from the well controls on measures of lexical-semantic abilities. NS and HD subjects provided as much information about the target picture as control subjects, but produced fewer action information units. Analysis of syntactic abilities revealed that the HD subjects produced significantly more grammatical errors than both the NS and control subjects and that the NS group performed in a similar manner to control subjects. These findings are considered in terms of current theories of subcortical language function Learning outcomes: As a result of this activity, the reader will obtain information about the debate surrounding the role of subcortical language mechanisms and be provided with new information on the comparative picture description abilities of individuals with known vascular and degenerative subcortical pathologies and healthy control participants. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
E. L. DeLosh, J. R. Busemeyer, and M. A. McDaniel (1997) found that when learning a positive, linear relationship between a continuous predictor (x) and a continuous criterion (y), trainees tend to underestimate y on items that ask the trainee to extrapolate. In 3 experiments, the authors examined the phenomenon and found that the tendency to underestimate y is reliable only in the so-called lower extrapolation region-that is, new values of x that lie between zero and the edge of the training region. Existing models of function learning, such as the extrapolation-association model (DeLosh et al., 1997) and the population of linear experts model (M. L. Kalish, S. Lewandowsky, & J. Kruschke, 2004), cannot account for these results. The authors show that with minor changes, both models can predict the correct pattern of results.
Resumo:
Pseudowords with inconsistent vs. consistent spellings (e.g., nurch, with rhyme neighbours search, lurch & perch, vs. mish, with neighbours dish, wish) were presented with definitions for naming either twice or 6 times. In an oral spelling test, there were main and interactive effects of consistency and the number of training trials on accuracy and main effects only on response latency, with the improvement in accuracy from 2 to 6 training trials greater for the more poorly learned inconsistent items. Of most interest, the smaller effect of training on accuracy in the consistent condition was reliable; contrary to the most obvious prediction of dual route spelling models that the sublexical procedure should produce correct spellings for consistent items early in training. In a second task students wrote spellings of multisyllabic words containing unstressed indeterminate (schwa) vowels. In their errors on the schwa vowel, students showed sensitivity to the most common spelling overall but also they were influenced by differences in schwa spellings in English words as a function of the number of syllables and schwa position. These results indicate that dual route models of spelling will need to accommodate the consistency of spellings within categories defined by lexical structure variables.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
Inagaki and Hatano (2002) have argued that young children initially understand biological phenomena in terms of vitalism, a mode of construal in which life or life-force is the central causal-explanatory concept. This study investigated the development of vitalistic reasoning in young children's concepts of life, the human body and death. Sixty preschool children between the ages of 3 years, 7 months and 5 years, 11 months participated. All children were initially given structured interviews to assess their knowledge of (1) human body function and (2) death. From this sample 40 children in the Training group were taught about the human body and how it functions to maintain life. The Control group (n = 20) received no training. All 60 children were subsequently reassessed on their knowledge of human body function and death. Results from the initial interviews indicated that young children who spontaneously appealed to vitalistic concepts in reasoning about human body functioning were also more sophisticated in their understanding of death. Results from the posttraining interviews showed that children readily learned to adopt a vitalistic approach to human body functioning, and that this learning coincided with significant development in their understanding of human body function, and of death. The overall pattern of results supports the claim that the acquisition of a vitalistic causal-explanatory framework serves to structure children's concepts and facilitates learning in the domain of biology. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently 'suboptimal' patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.
Resumo:
The present study employed electropalatography (EPG) and a nonspeech measure of lingual function to examine, in detail, the articulatory production deficits of two individuals with Parkinson disease (PD) and hypokinetic dysarthria. Participants read 10 repetitions of CV words contained within the carrier phrase I saw a _ today while wearing an EPG artificial palate. Target consonants included the alveolar stop /t/, lateral approximant /l/, and the alveolar fricative /s/ in the /a/ vowel environment. The results of the two participants were compared to an age-matched control group. Examination of the perceptual features of articulatory production, lingual strength, fine force control and endurance, tongue-palate contact patterns, and segment durations were conducted. Results of the study revealed quite different articulatory deficits in the two participants. Specifically, the articulation of Participant One (P1) was characterized by a fast rate of speech, undershooting of articulatory targets, and reduced duration of consonant closures. In contrast, Participant Two (P2) demonstrated tongue-palate contact patterns indicative of impaired lingual control in the presence of both normal and increased articulatory segment durations. Potential reasons for the differing articulatory deficits were hypothesized. The current study demonstrated that assessment with EPG identified potential causes of consonant imprecision in two individuals with hypokinetic dysarthria. Directions for speech pathology intervention, salient from the results of the study, were also noted.
Resumo:
The objective of this study was to evaluate the effects of posteroventral pallidotomy on perceptual and physiological measures of articulatory function and speech intelligibility in Parkinson disease (M). The study examined 11 participants with M who underwent posteroventral pallidotomy Physiological measures of hp and tongue function. and perceptual measures of speech intelligibility were obtained prepallidotomy and 3 months postpallidotomy. The participants with PD were also assessed on the Unified Parkinsons Disease Rating Scale (UPDRS Part III) In addition, the study included a group of 16 participants with PD who did not undergo pallidotomy and a group of 30 nonneurologically impaired participants. Analyses of physiological articulatory function and speech intelligibility did not reveal corresponding improvements in motor speech function as observed in general limb motor function postpallidotomy. Overall, individual reliable change analyses revealed that the majority of surgical PD participants demonstrated no reliable change on perceptual and physiological measures of articulation. The cur rent study revealed preliminary evidence that articulatury function and speech intelligibility did not change following posteroventral pallidotomy in a group of individuals with PD.
Resumo:
SQL (Structured Query Language) is one of the essential topics in foundation databases courses in higher education. Due to its apparent simple syntax, learning to use the full power of SQL can be a very difficult activity. In this paper, we introduce SQLator, which is a web-based interactive tool for learning SQL. SQLator's key function is the evaluate function, which allows a user to evaluate the correctness of his/her query formulation. The evaluate engine is based on complex heuristic algorithms. The tool also provides instructors the facility to create and populate database schemas with an associated pool of SQL queries. Currently it hosts two databases with a query pool of 300+ across the two databases. The pool is divided into 3 categories according to query complexity. The SQLator user can perform unlimited executions and evaluations on query formulations and/or view the solutions. The SQLator evaluate function has a high rate of success in evaluating the user's statement as correct (or incorrect) corresponding to the question. We will present in this paper, the basic architecture and functions of SQLator. We will further discuss the value of SQLator as an educational technology and report on educational outcomes based on studies conducted at the School of Information Technology and Electrical Engineering, The University of Queensland.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
Abstract: Among the vertebrates, crocodilians have the most complex anatomy of the heart and outflow channels. Their cardiovascular anatomy may also be the most functionally sophisticated, combining as it does the best features of both reptilian and mammalian (and avian) systems. The puzzlingly complex "plumbing" of crocodilians has fascinated anatomists and physiologists for a very long time, the first paper being that by Panizza (1833). Gradually, with the application of successive techniques of investigation as they became available, its functional significance has become reasonably clear, and the complexity is now revealed as a cardiovascular system of considerable elegance. In this paper I will review the main anatomical features of the heart and outflow channels, discuss what is known about the way they work, and speculate about the probable functional significance.
Resumo:
What do visitors want or expect from an educational leisure activity such as a visit to a museum, zoo, aquarium or other such experience? Is it to learn something or to experience learning? This paper uses the term 'learning for fun' to refer to the phenomenon in which visitors engage in a learning experience because they value and enjoy the process of learning itself. Five propositions regarding the nature of learning for fun are discussed, drawing on quantitative and qualitative data from visitors to a range of educational leisure activities. The commonalities between learning for fun and other theoretical constructs such as 'experience,' 'flow', 'intrinsic motivation', and 'curiosity' are explored. It is concluded that learning for fun is a unique and distinctive offering of educational leisure experiences, with implications for future research and experience design.
Resumo:
Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.
Resumo:
When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.