46 resultados para Frog Neuromuscular-junction
em University of Queensland eSpace - Australia
Resumo:
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.
Resumo:
beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.
Resumo:
Exocytosis of neurotransmitter containing vesicles supports neuronal communication. The importance of molecular interactions involving specific lipids has become progressively more evident and the lipid composition of both the synaptic vesicle and the pre-synaptic plasma membrane at the active zone has significant functional consequences for neurotransmitter release. Several classes of lipids have been implicated in exocytosis including polyunsaturated fatty acids and phosphoinositides. This minireview will focus on recent developments regarding the role of phosphoinositides in neurosecretion.
Resumo:
GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.
Resumo:
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
We examined several morphological parameters of the gastrointestinal tract, digesta passage rates, and nutrient assimilation efficiencies of Green-striped Burrowing frogs (Cyclorana alboguttata) following prolonged fasting during three months of aestivation and compared these with frogs that had been continuously fed. Whole animal digesta passage rates were significantly reduced following three months aestivation as a result of a decreased digesta evacuation rate from the stomach. Furthermore, food was selectively retained in the small intestine for an increased time following three months of aestivation. Overall digestibility of food and nitrogen, carbon, and energy extraction efficiencies were not significantly different from control values following three months of aestivation. These findings suggest that C. alboguttata employs reduced digesta passage rates so as to maximize nutrient assimilation efficiency following prolonged food deprivation during aestivation. (C) 2003 Wiley-Liss, Inc.
Resumo:
The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.
Resumo:
The green-striped burrowing frog, Cyclorana alboguttata, survives extended drought periods by burrowing underground and aestivating. These frogs remain immobile within cocoons of shed skin and mucus during aestivation and emerge from their burrows upon heavy rains to feed and reproduce. Extended periods of immobilisation in mammals typically result in bone remodelling and a decrease in bone strength. We examined the effect of aestivation and, hence, prolonged immobilisation on cross-sectional area, histology and bending strength in the femur and tibiolibula of C alboguttata. Frogs were aestivated in soil for three and nine months and were compared with control animals that remained active, were fed and had a continual supply of water. Compared with the controls, long bone size, anatomy and bending strength remained unchanged, indicating an absence of disuse osteoporosis. This preservation of bone tissue properties enables C. alboguttata to compress the active portions of their life history into unpredictable windows of opportunity, whenever heavy rains occur.
Resumo:
Purpose: This study compared the neuromuscular efficiency (NME) of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 20 chronic neck pain patients and 20 asymptomatic controls. Method: Myoelectric signals were recorded from the sternal head of SCM and the AS muscles as subjects performed sub-maximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The NME was calculated as the ratio between MVC and the corresponding average rectified value of the EMG signal. Ultrasonography was used to measure subcutaneous tissue thickness over the SCM and AS to ensure that differences did not exist between groups. Results: For both the SCM and AS muscles, NME was shown to be significantly reduced in patients with neck pain at 25% MVC (p < 0.05). Subcutaneous tissue thickness over the SCM and AS muscles was not different between groups. Conclusions: Reduced NME in the superficial cervical flexor muscles in patients with neck pain may be a measurable altered muscle strategy for dysfunction in other muscles. This aberrant pattern of muscle activation appears to be most evident under conditions of low load. NME, when measured at 25% MVC, may be a useful objective measure for future investigation of muscle dysfunction in patients with neck pain.
Resumo:
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985-1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985-1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.
Resumo:
The On-Off direction-selective ganglion cells (DSGCs) in the rabbit retina comprise four distinct subtypes that respond preferentially to image motion in four orthogonal directions; each subtype forms a regular territorial array, which is overlapped by the other three arrays. In this study, ganglion cells in the developing retina were injected with Neurobiotin, a gap-junction-permeable tracer, and the DSGCs were identified by their characteristic type 1 bistratified (BiS1) morphology. The complex patterns of tracer coupling shown by the BiSl ganglion cells changed systematically during the course of postnatal development. BiSl cells appear to be coupled together around the time of birth, but, over the next 10 days, BiSl cells decouple from each other, leading to the mature pattern in which only one subtype is coupled. At about postnatal day 5, before the ganglion cells become visually responsive, each of the BiSl cells commonly showed tracer coupling both to a regular array of neighboring BiSl cells, presumably destined to be DSGCs of the same subtype, and to a regular array of overlapping BiSl cells, presumably destined to be DSGCs of a different subtype. The gap-junction intercellular communication between subtypes of DSGCs with different preferred directions may play an important role in the differentiation of their synaptic connectivity, with respect to either the inputs that DSGCs receive from retinal interneurons or the outputs that DSGCs make to geniculate neurons. (C) 2004 Wiley-Liss, Inc.
Resumo:
Poison frogs in the anuran family Dendrobatidae use bright colors on their bodies to advertise toxicity. The species Dendrobates pumilio Schmidt 1858, the strawberry poison frog, shows extreme polymorphism in color and pattern in Panama. It is known that females of D. pumilio preferentially choose mates of their own color morph. Nevertheless, potential predators must clearly see and recognize all color morphs if the aposermatic signaling system is to function effectively. We examined the ability of conspecifics and a model predator to discriminate a diverse selection of D. pumilio colors from each other and from background colors. Microspectrophotometry of isolated rod and cone photoreceptors of D. pumilio revealed the presence of a trichromatic photopic visual system. A typical tetrachromatic bird system was used for the model predator. Reflectance spectra of frog and background colors were obtained, and discrimination among spectra in natural illuminants was mathematically modeled. The results revealed that both D. pumilio and the model predator discriminate most colors quite well, both from each other and from typical backgrounds, with the predator generally performing somewhat better than the conspecifics. Each color morph displayed at least one color signal that is highly visible against backgrounds to both visual systems. Our results indicate that the colors displayed by the various color morphs of D. pumilio are effective signals both to conspecifics and to a model predator.
Resumo:
The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Resumo:
The effects of short-term fasting and prolonged fasting during aestivation on the morphology of the proximal small intestine and associated organs were investigated in the green-striped burrowing frog, Cyclorana alboguttata (Anura: Hylidae). Animals were fasted for 1 week while active or for 3-9 months during aestivation. Short-duration fasting (1 week) had little effect on the morphology of the small intestine, whilst prolonged fasting during aestivation induced marked enteropathy including reductions in intestinal mass, length and diameter, longitudinal fold height and tunica muscularis thickness. Enterocyte morphology was also affected markedly by prolonged fasting: enterocyte cross-sectional area and microvillous height were reduced during aestivation, intercellular spaces were visibly reduced and the prevalence of lymphocytes amongst enterocytes was increased. Mitochondria and nuclei were also affected by 9 months of aestivation with major disruptions to mitochondrial cristae and increased clumping of nuclear material and increased infolding of the nuclear envelope. The present study demonstrates that the intestine of an aestivating frog responds to prolonged food deprivation during aestivation by reducing in size, presumably to reduce the energy expenditure of the organ.