4 resultados para Forte de Monsanto
em University of Queensland eSpace - Australia
Resumo:
The UN Cartagena Protocol on Biosafety adopted in Montreal, 29 January, 2000 and opened for signature in Nairobi, 15-26 May, 2000 will exert a profound effect on international trade in genetically modified organisms (GMOs) and their products. In this paper, the potential effects of various articles of the Protocol on international trade in GMOs are analyzed. Based on the present status of imports of GMOs and domestic research and development of biotechnology in China, likely trends in imports of foreign GM food and related products after China accedes to WTO is explored. Also, China's potential countermeasures to control and regulate imports of GMOs in line with implementation of the Protocol are discussed. China, in recent times, has increased its food and agricultural imports substantially from USA and Canada. China imported soybean 10.42 mill. tons in 2000 and about 15 mill tons in 2001, of which majority are from USA where GM soybean accounts for 60%. The plantation of US Monsanto's transgenic Bt cotton was increased to more than 1 million ha in China in 2001. Though China has paid great attention to develop biotechnology, it appears to have little scope to export GMOs and GM products. So China may consider a range of administrative measures to implement the Cartagena Protocol and to regulate its import of GMOs and GM agricultural products. Consequently, the Regulation on Safety of Agri-GMOs was issued on June, 2001 and followed three detailed rules issued in Jan. of 2002, with a priority to limit foreign GMOs importing by safety certification and labeling system. These were outlined taking into account policies adopted in Western countries such as green barriers to international trade.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.