5 resultados para Formal Semantics.
em University of Queensland eSpace - Australia
Resumo:
Behaviour Trees is a novel approach for requirements engineering. It advocates a graphical tree notation that is easy to use and to understand. Individual requirements axe modelled as single trees which later on are integrated into a model of the system as a whole. We develop a formal semantics for a subset of Behaviour Trees using CSP. This work, on one hand, provides tool support for Behaviour Trees. On the other hand, it builds a front-end to a subset of the CSP notation and gives CSP users a new modelling strategy which is well suited to the challenges of requirements engineering.
Resumo:
μ-Charts are a Statechart-like language which is designed for specifying reactive systems. This paper extends the language of μ-charts with a new parallel operator; it defines a formal semantics for the language, and then it explores the semantic properties of the extended language. The paper concludes with a simple case study to illustrate how the language may be used to specify and reason about reactive systems.
Resumo:
Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original system’s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly.
Resumo:
Two types of semantics have been given to object-oriented formal specification languages. Value semantics denote a class by a set of values representing its objects. Reference semantics denote a class by a set of references, or pointers, to values representing its objects. While adopting the former facilitates formal reasoning, adopting the latter facilitates transformation to object-oriented code. In this paper, we propose a combined approach using value semantics for abstract specification and reasoning, and then refining to a reference semantics before transforming specification to code.
Resumo:
Previous work on formally modelling and analysing program compilation has shown the need for a simple and expressive semantics for assembler level programs. Assembler programs contain unstructured jumps and previous formalisms have modelled these by using continuations, or by embedding the program in an explicit emulator. We propose a simpler approach, which uses techniques from compiler theory in a formal setting. This approach is based on an interpretation of programs as collections of program paths, each of which has a weakest liberal precondition semantics. We then demonstrate, by example, how we can use this formalism to justify the compilation of block-structured high-level language programs into assembler.