10 resultados para Forces de cisaillement
em University of Queensland eSpace - Australia
Resumo:
Chronic unremittent low back pain (LBP) is characterised by cognitive barriers to treatment. Combining a motor control training approach with individualised education about pain physiology is effective in this group of patients. This randomized comparative trial (i) evaluates an approach to motor control acquisition and training that considers the complexities of the relationship between pain and motor output, and (ii) compares the efficacy and cost of individualized and group pain physiology education. After an "ongoing usual treatment" period, patients participated in a 4-week motor control and pain physiology education program. Patients received four one-hour individualized education sessions (IE) or one 4-hour group lecture (GE). Both groups reduced pain (numerical rating scale) and disability (Roland Morris Disability Questionnaire). IE showed bigger decreases, which were maintained at 12 months (P < 0.05 for all). The combined motor control and education approach is effective. Although group education imparts a lesser effect, it may be more cost-efficient. [ABSTRACT FROM AUTHOR]
Resumo:
his paper contains a warning for investors, executives, analysts and scientists about the sustainability of the biotechnology industry. The study upon which the paper is based examines the impact of market forces on the biotechnology industry and argues that the short-term focus of market driven policies and practices impacts on the sustainability of firms operating in the industry. The market is represented by the National Association of Securities Dealers, Automated Quotations Market (NASDAQ), considered to be one of the vehicles of the promotion of ''new economy'' companies and principles. Through the application of bibliometric data (using both refereed and non-refereed papers), matched with the long term tracking of the NASDAQ Biotechnology Index, the authors provide a clear indication that the short-term investment thinking is leading an industry that is characterised by long R&D cycles. There is an incompatibility between the shorter-term investment considerations and the long-term scientific developments the biotechnology industry is attempting to achieve. Graphs and illustrations are provided to portray the comparative data.
Resumo:
The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz–Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle—in this case, the refractive index—to be determined.