3 resultados para Focusing.

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A volume-of-fluid numerical method is used to predict the dynamics of drop formation in an axi-symmetric microfluidic flow-focusing geometry for a liquid-liquid system. The Reynolds numbers and Weber numbers approximate those of a three-dimensional flow in recently published experiments. We compare the predicted drop formation with the experimental results at various flow rates, and discuss the mechanisms of drop formation in this context. Despite the differences in geometry, we find qualitative correspondence between the numerical and experimental results. Both end-pinching and capillary-wave instability are important for droplet break-up at the higher flow rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis. (c) 2006 Elsevier B.V. All rights reserved.