7 resultados para Fluorescence probes

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 23S rRNA-targeted probes GAM42a and BET42a provided equivocal results with the uncultured gammaproteobacterium 'Candidatus Competibacter phosphatis' where some cells bound GAM42a and other cells bound BET42a in fluorescence in situ hybridization (FISH) experiments. Probes GAM42a and BET42a span positions 1027-1043 in the 23S rRNAand differ from each other by one nucleotide at position 1033. Clone libraries were prepared from PCR products spanning the 16S rRNA genes, intergenic spacer region and 23S rRNA genes from two mixed cultures enriched in 'Candidatus C. phosphatis'. With individual clone inserts, the 16S rDNA portion was used to confirm the source organism as 'Candidatus C. phosphatis' and the 23S rDNA portion was used to determine the sequence of the GAM42a/BET42a probe target region. Of the 19 clones sequenced, 8 had the GAM42a probe target (T at position 1033) and 11 had G at position 1033, the only mismatch with GAM42a. However, none of the clones had the BET42a probe target (A at 1033). Non-canonical base-pairing between the 23S rRNA of 'Candidatus C. phosphatis' with G at position 1033 and GAM42a (G-A) or BET42a (G-T) is likely to explain the probing anomalies. A probe (GAM42_C1033) was optimized for use in FISH, targeting cells with G at position 1033, and was found to highlight not only some 'Candidatus C. phosphatis' cells, but also other bacteria. This demonstrates that there are bacteria in addition to 'Candidatus C. phosphatis' with the GAM42_C1033 probe target and not the BET42a or GAM42a probe target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-.N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO3-.N mg of MLVSS-1 h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [C-13] methanol to biomark the DNA of the denitrifiers. The extracted [C-13]DNA and [C-12]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [C-13]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [C-12]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [C-14] methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular tools for the species-specific detection of Gluconacetobacter sacchari, Gluconacetobacter diazotrophicus, and Gluconacetobacter liquefaciens from the pink sugarcane mealybug (PSMB) Saccharicoccus sacchari Cockerell (Homiptera: Pseudococcidae) were developed and used in polymerase chain reactions (PCR) and in fluorescence in situ hybridizations (FISH) to better understand the microbial diversity and the numerical significance of the acetic acid bacteria in the PSMB microenvironment. The presence of these species in the PSMB occurred over a wide range of sites, but not in all sites in sugarcane-growing areas of Queensland, Australia, and was variable over time. Molecular probes for use in FISH were also designed for the three acetic acid bacterial species, and shown to be specific only for the target species. Use of these probes in FISH of squashed whole mealybugs indicated that these acetic acid bacteria species represent only a small proportion of the microbial population of the PSMB. Despite the detection of Glac. sacchari, Glac. diazotrophicus, and Glac. liquefaciens by PCR from different mealybugs isolated at various times and from various sugarcane-growing areas in Queensland, Australia, these bacteria do not appear to be significant commensals in the PSMB environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bacterial culture collection of 104 strains was obtained from an activated sludge wastewater treatment plant to pursue studies into microbial flocculation. Characterisation of the culture collection using a polyphasic approach indicated seven isolates, phylogenetically affiliated with the deep-branching Xanthomonas group of the class Gammaproteobacteria, were unable to hybridise the GAM42a fluorescence in situ hybridisation (FISH) probe for Gammaproteobacteria. The sequence of the GAM42a probe target region in the 23S rRNA gene of these isolates was determined to have mismatches to GAM42a. Probes perfectly targeting the mismatches (GAM42a_TI038_G1031, and GAM42a_T1038 and GAM42a_A1041_A1040) were synthesised, and used in conjunction with GAM42a in FISH to,study the Gammaproteobacteria community structure in one full-scale activated sludge plant. Several bacteria in the activated sludge biomass bound the modified probes demonstrating their presence and the fact that these Gammaproteobacteria have been overlooked in community structure analyses of activated sludge. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial communities play important roles in the functioning of coral reef communities. However, extensive autofluorescence of coral tissues and endosymbionts limits the application of standard fluorescence in situ hybridization (FISH) techniques for the identification of the coral-associated bacterial communities. This study overcomes these limitations by combining FISH and spectral imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A minor groove binder (MGB) TaqMan real-time PCR assay was developed for the detection of respiratory syncytial virus (RSV) in clinical specimens. Upon evaluation of the assay, notable differences were observed in the overall fluorescent response obtained from RSV positive specimens, with some linear amplification curves deviating only slightly from baseline fluorescence. Sequencing of the probes targets in these RSV strains revealed single base mismatches with the MGB TaqMan probe. overall, these results highlight the usefulness of MGB TaqMan probes for the detection of mismatches, but suggest that MGB Taqman probes have limitations for routine screening for uncharacterised viral strains. (C) 2005 Elsevier B.V. All rights reserved.