33 resultados para Flow rate variation coefficient

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle neutron scattering measurements on a series of monodisperse linear entangled polystyrene melts in nonlinear flow through an abrupt 4:1 contraction have been made. Clear signatures of melt deformation and subsequent relaxation can be observed in the scattering patterns, which were taken along the centerline. These data are compared with the predictions of a recently derived molecular theory. Two levels of molecular theory are used: a detailed equation describing the evolution of molecular structure over all length scales relevant to the scattering data and a simplified version of the model, which is suitable for finite element computations. The velocity field for the complex melt flow is computed using the simplified model and scattering predictions are made by feeding these flow histories into the detailed model. The modeling quantitatively captures the full scattering intensity patterns over a broad range of data with independent variation of position within the contraction geometry, bulk flow rate and melt molecular weight. The study provides a strong, quantitative validation of current theoretical ideas concerning the microscopic dynamics of entangled polymers which builds upon existing comparisons with nonlinear mechanical stress data. Furthermore, we are able to confirm the appreciable length scale dependence of relaxation in polymer melts and highlight some wider implications of this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion model for percutaneous absorption is developed for the specific case of delivery to the skin being limited by the application of a finite amount of solute. Two cases are considered; in the first, there is an application of a finite donor (vehicle) volume, and in the second, there are solvent-deposited solids and a thin vehicle with a high partition coefficient. In both cases, the potential effect of an interfacial resistance at the stratum corneum surface is also considered. As in the previous paper, which was concerned with the application of a constant donor concentration, clearance limitations due to the viable eqidermis, the in vitro sampling rate, or perfusion rate in vivo are included. Numerical inversion of the Laplace domain solutions was used for simulations of solute flux and cumulative amount absorbed and to model specific examples of percutaneous absorption of solvent-deposited solids. It was concluded that numerical inversions of the Laplace domain solutions for a diffusion model of the percutaneous absorption, using standard scientific software (such as SCIENTIST, MicroMath Scientific software) on modern personal computers, is a practical alternative to computation of infinite series solutions. Limits of the Laplace domain solutions were used to define the moments of the flux-time profiles for finite donor volumes and the slope of the terminal log flux-time profile. The mean transit time could be related to the diffusion time through stratum corneum, viable epidermal, and donor diffusion layer resistances and clearance from the receptor phase. Approximate expressions for the time to reach maximum flux (peak time) and maximum flux were also derived. The model was then validated using reported amount-time and flux-time profiles for finite doses applied to the skin. It was concluded that for very small donor phase volume or for very large stratum corneum-vehicle partitioning coefficients (e.g., for solvent deposited solids), the flux and amount of solute absorbed are affected by receptor conditions to a lesser extent than is obvious for a constant donor constant donor concentrations. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:504-520, 2001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate here the diffusion of n-decane in nanoporous MCM-41 silicas with pore diameters between 3.0 and 4.3 nm, and at various temperatures and purge flow rates, by the Zero Length Column method. A complete-time-range analysis of desorption curves is used to derive the diffusion coefficient, and the effect of pore size, purge flow rate and temperature on the diffusion character is systematically studied. The results show that the calculated low-coverage diffusivity values are strongly dependent on temperature but only weakly dependent on pore size. The study reveals that transport is controlled by intracrystalline diffusion and dominated by sorbate-sorbent interaction, with the experimental isosteric heat matching the potential energy of flat-lying n-decane molecules on the surface, determined using a united atom model. The diffusion activation energy and adsorption isosteric heat at zero loading for the different pore size MCM-41 samples vary in a narrow range respectively, and their ratio is essentially constant over the pore size range studied. The study shows that the ZLC method is an effective tool to investigate the diffusion kinetics of hydrocarbons in mesoporous MCM-41 materials. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Including positive end-expiratory pressure (PEEP) in the manual resuscitation bag (MRB) may render manual hyperinflation (MHI) ineffective as a secretion maneuver technique in mechanically ventilated patients. In this study we aimed to determine the effect of increased PEEP or decreased compliance on peak expiratory flow rate (PEF) during MHI. A blinded, randomized study was performed on a lung simulator by 10 physiotherapists experienced in MHI and intensive care practice. PEEP levels of 0-15 cm H2O, compliance levels of 0.05 and 0.02 L/cm H2O, and MRB type were randomized. The Mapleson-C MRB generated significantly higher PEF (P < 0.01, d = 2.72) when compared with the Laerdal MRB for all levels of PEEP. In normal compliance (0.05 L/cm H2O) there was a significant decrease in PEF (P < 0.01, d = 1.45) for a PEEP more than 10 cm H2O in the Mapleson-C circuit. The Laerdal MRB at PEEP levels of more than 10 cm H2O did not generate a PEF that is theoretically capable of producing two-phase gas-liquid flow and, consequently, mobilizing pulmonary secretions. If MHI is indicated as a result of mucous plugging, the Mapleson-C MRB may be the most effective method of secretion mobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fouling is the deposition of milk solids on heat transfer sur aces, particularly heat exchangers. It is a major industrial problem, which causes a decrease in heat transfer efficiency and shortens run times. The resultant effect is a decrease in process efficiency and economy. For studying and monitoring deposit formation, suitable fouling detectors or methods of measuring the deposit are required. This can be achieved through direct means, whereby the deposit is analyzed after a certain time, or indirectly through instrumentation for monitoring parameters such as temperature, pressure, flow rate, overall heat transfer coefficient, heat flux, and other physical properties. This article reviews the various reported fouling detection methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient response of an adsorbing or non-adsorbing tracer injected as step or square pulse input in a diffusion cell with two flowing streams across the pellet is theoretically investigated in this paper. Exact solutions and the asymptotic solutions in the time domain and in three different limits are obtained by using an integral transform technique and a singular perturbation technique, respectively. Parametric dependence of the concentrations in the top and bottom chambers can be revealed by investigating the asymptotic solutions, which are far simpler than their exact counterpart. In the time domain investigation, it is found that the bottom-chamber concentration is very sensitive to the value of the macropore effective diffusivity. Therefore this concentration could be used to extract diffusivity by fitting in the time domain. The bottom-chamber concentration is also sensitive to flow rate, pellet length chamber volume and the type of input (step and square input).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the in-situ perfused rat liver has been used to examine the effect of changing the protein content of the perfusate on the hepatic extraction of O-acyl esters of salicylic acid. The hepatic availability (F) of these solutes was studied at a flow-rate of 30 mt min(-1) with perfusate albumin concentrations of 0, 2, and 4% w/v. The hepatic availability of the esters was shown to decrease with increasing carbon-chain length in the O-acyl group; for all the esters the hepatic availability increased with increasing albumin concentration in the perfusate. The dispersion-model-derived efficiency number (R-N) Of the esters was shown to increase with increasing lipophilicity and decrease with increasing albumin concentration in the perfusate. The unbound fraction (f(u),) of the esters decreased with lipophilicity. R-N/f(u), for acetylsalicylic acid remained relatively constant as the albumin concentration was increased. However, R-N/f(u), for n-pentanoyl- and n-hexanoylsalicylic acids increased significantly as albumin concentration increased from 0% to 4%. Thus, for the more lipophilic solutes (n-pentanoyl- and n-hexanoylsalicylic acids) the presence of albumin apparently facilitates the uptake of unbound solute relative to acetylsalicylic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated limb perfusion (ILP) with melphalan is used to treat recurrent melanoma. This study aimed to develop a microdialysis technique for melphalan tissue concentration measurement during ILP. The effects of melphalan concentration (50-600 mu g/ml), microdialysis flow rate (0.55-17.5 mu l/min), probe length (5-50 mm) and temperature (25-41.5 degrees C) on in vitro recovery were studied. In addition, in vivo recovery was measured in rat hindlimbs perfused with melphalan using 50 mm microdialysis probes implanted subcutaneously and into muscle. Both dialysate and tissue sample melphalan concentrations were determined by high performance liquid chromatography. The in vitro recovery of melphalan was not affected by melphalan concentration or temperature, but increased with probe length and decreased with flow rate. The melphalan concentrations in subcutaneous and muscle dialysates were not significantly different. A linear relationship was found between tissue dialysate concentrations and actual tissue concentrations of melphalan (r(2) = 0.97). Microdialysis is a potential method for tissue drug monitoring which may assist in the efficacious use of cytotoxics in human ILP. (C) 2000 Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 in anatase crystal phase is a very effective catalyst in the photocatalytic oxidation of organic compounds in water. To improve the recovery rate of TiO2 photocatalysts, which in most cases are in fine powder form, the chemical vapor deposition (CVD) method was used to load TiO2 onto a bigger particle support, silica gel. The amount of titania coating was found to depend strongly on the synthesis parameters of carrier gas flow rate and coating time. XPS and nitrogen ads/desorption results showed that most of the TiO2 particles generated from CVD were distributed on the external surface of the support and the coating was stable. The photocatalytic activities of TiO2/silica gel with different amounts of titania were evaluated for the oxidation of phenol aqueous solution and compared with that of Degussa P25. The optimum titania loading rate was found around 6 wt % of the TiO2 bulk concentration. Although the activity of the best TiO2/silica gel sample was still lower than that of P25, the synthesized TiO2/silica gel catalyst can be easily separated from the treated water and was found to maintain its TiO2 content and catalytic activity.