105 resultados para First-principle
em University of Queensland eSpace - Australia
Resumo:
We present a first-principles density-functional calculation for the Raman spectra of a neutral BEDT-TTF molecule. Our results are in excellent agreement with experimental results. We show that a planar Structure is not a stable state of a neutral BEDT-TTF molecule. We consider three possible conformations and discuss their relation to disorder in these systems.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H-2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H-2 molecules, respectively). Additionally, a molecular adsorption state of H-2 above the Ti atom is observed for the first time and is attributed to the polarization of the H-2 molecule by the Ti cation. Our results parallel recent findings for H-2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.
Resumo:
First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.
Resumo:
We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, HL. We show that HL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.
Resumo:
Watkins proposes a neo-Popperian solution to the pragmatic problem of induction. He asserts that evidence can be used non-inductively to prefer the principle that corroboration is more successful over all human history than that, say, counter-corroboration is more successful either over this same period or in the future. Watkins's argument for rejecting the first counter-corroborationist alternative is beside the point. However, as whatever is the best strategy over all human history is irrelevant to the pragmatic problem of induction since we are not required to act in the past, and his argument for rejecting the second presupposes induction.
Resumo:
The long performance of an isothermal fixed bed reactor undergoing catalyst poisoning is theoretically analyzed using the dispersion model. First order reaction with dth order deactivation is assumed and the model equations are solved by matched asymptotic expansions for large Peclet number. Simple closed-form solutions, uniformly valid in time, are obtained.
Resumo:
In this work the in-situ perfused rat liver has been used to examine the effect of changing the protein content of the perfusate on the hepatic extraction of O-acyl esters of salicylic acid. The hepatic availability (F) of these solutes was studied at a flow-rate of 30 mt min(-1) with perfusate albumin concentrations of 0, 2, and 4% w/v. The hepatic availability of the esters was shown to decrease with increasing carbon-chain length in the O-acyl group; for all the esters the hepatic availability increased with increasing albumin concentration in the perfusate. The dispersion-model-derived efficiency number (R-N) Of the esters was shown to increase with increasing lipophilicity and decrease with increasing albumin concentration in the perfusate. The unbound fraction (f(u),) of the esters decreased with lipophilicity. R-N/f(u), for acetylsalicylic acid remained relatively constant as the albumin concentration was increased. However, R-N/f(u), for n-pentanoyl- and n-hexanoylsalicylic acids increased significantly as albumin concentration increased from 0% to 4%. Thus, for the more lipophilic solutes (n-pentanoyl- and n-hexanoylsalicylic acids) the presence of albumin apparently facilitates the uptake of unbound solute relative to acetylsalicylic acid.
Resumo:
The Lake Eacham rainbowfish (Melanotaenia eachamensis) was declared extinct in the wild in the late 1980s after it disappeared from its only known locality, an isolated crater lake in northeast Queensland. Doubts have been raised about whether this taxon is distinct from surrounding populations of the eastern rainbowfish (Melanotaenia splendida splendida). We examined the evolutionary distinctiveness of M. eachamensis, obtained from captive stocks, relative to M. s. splendida through analysis of variation in mtDNA sequences, nuclear microsatellites, and morphometric characters Captive M. eachamensis had mtDNAs that were highly divergent from those in most populations of M. s. splendida. A broader geographic survey using RFLPs revealed some populations initially identified as M. s. splendida, that carried eachamensis mtDNA, whereas some others had mixtures of eachamensis and splendida mtDNA. The presence of eachamensis-like mtDNA in these populations could in principle be due to (1) sorting of ancestral polymorphisms, (2) introgression of M. eachamensis mtDNA into M. s. splendida, or (3) incorrect species boundaries, such that some populations currently assigned to M. s. splendida are M. eachamensis or are mixtures of the two species. These alternatives hypotheses were evaluated through comparisons of four nuclear microsatellite loci and morphometrics and meristics. In analyses of both data sets, populations of M. s. splendida with eachamensis mtDNA were more similar to captive M. eachamensis than to M. s. splendida with splendida mtDNA, supporting hypothesis 3. These results are significant for the management of M. eachamensis in several respects. First the combined molecular and morphological evidence indicates that M. eachamensis is a distinct species and a discrete evolutionarily significant unit worthy of conservation effort. Second it appears that the species boundary between M. eachamensis and M. s. splendida has been misdiagnosed such that there are extant populations on the Atherton Tableland as well as areas where both forms coexist. Accordingly we suggest that M. eachamensis be listed as vulnerable, rather than critical (or extinct in the wild). Third, the discovery of extant but genetically divergent populations of M. eachamensis on the Atherton Tableland broadens the options for future reintroductions to Lake Eacham.
Resumo:
Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.