2 resultados para First-derivative spectrophotometry
em University of Queensland eSpace - Australia
Resumo:
In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.