38 resultados para Financial microstructure
em University of Queensland eSpace - Australia
Resumo:
The corrosion of die cast AZ91D was studied and related to its microstructure. For comparison and to more fully understand the behaviour of die cast AZ91D, corrosion studies and microstructural examinations were also carried out using slowly solidified high purity AZ91, Mg-2%Al, Mg-9%Al, low purity magnesium and high purity magnesium. Corrosion was studied in 1N NaCl at pH 11 by (1) observing the corrosion morphology, (2) measuring electrochemical polarisation curves and (3) simultaneously measuring both the hydrogen evolution rate and the magnesium dissolution rate. The skin of die cast AZ91D showed better corrosion resistance than the interior. This is attributed to a combination of(1) a higher volume fraction of the beta phase, (2) a more continuous beta phase distribution around finer alpha grains, and (3) lower porosity in the skin layer than in the interior of the die casting. This study showed that the casting method can influence the corrosion performance by its influence on the alloy microstructure. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The solution treatment stage of the T6 heat-treatment of Al-7%Si-Mg foundry alloys influences microstructural features such as Mg2Si dissolution, and eutectic silicon spheroidisation and coarsening. Microstructural and microanalytical studies have been conducted across a range of Sr-modified Al-7%Si alloys, with an Fe content of 0.12% and Mg contents ranging from 0.3-0.7wt%. Qualitative and quantitative metallography have shown that, in addition to the above changes, solution treatment also results in changes to the relative proportions of iron-containing intermetallic particles and that these changes are composition-dependent. While solution treatment causes a substantial transformation of pi phase to beta phase in low Mg alloys (0.3-0.4%), this change is not readily apparent at higher Mg levels (0.6-0.7%). The pi to beta transformation is accompanied by a release of Mg into the aluminum matrix over and above that which arises from the rapid dissolution of Mg2Si. Since the level of matrix Mg retained after quenching controls an alloy's subsequent precipitation hardening response, a proper understanding of this phase transformation is crucial if tensile properties are to be maximised.
Resumo:
Gastropod shells consist of two crystal types of calcium carbonate, an outer, prismatic calcite layer and an inner nacreous layer made of aragonite. In cross-section, the nacre of the nacreous layer appears to have a regular brick-like microstructure composed of thin laminae of aragonite crystals, separated by very thin sheets of protein (Lutz and Rhoads, 1980; Nakahara, 1983). In abalone (Genus, Haliotis) and other gastropods, thin layers of non-lamellar pigmented material occur within the nacre and have been termed alternatively, fine lines, growth rings or growth lines (Shepherd et al., 1995). It has been suggested that these pigmented layers are small, prismatic, calcite layers (Shepherd and Avalos-Borja, 1997; Zaremba et al., 1996) but investigations using a Raman laser in Haliotis rubra show that they contain aragonite rather than calcite (Hawkes et al, 1996). Day and Fleming (1992) suggest that the occurrence of pigmented layers is correlated with regular exogenous cues such as reproduction or temperature changes and indeed in some species, pigmented layers in the shell can be used to age abalone (review: Shepherd and Triantafillos, 1997). However, McShane and Smith (1992) suggest that pigmented layers can occur irregularly and therefore may be unreliable indicators of age.
Resumo:
Recent increasing applications for cast Al-Si alloys are particularly driven by the need for lightweighting components in the automotive sector. To improve mechanical properties, elements such as strontium, sodium and antimony can be added to modify the eutectic silicon from coarse and plate-like to fine and fibrous morphology. It is only recently being noticed that the morphological transformation resulting from eutectic modification is also accompanied by other, equally significant, but often unexpected changes. These changes can include a 10-fold increase in the eutectic grain size, redistribution of low-melting point phases and porosity as well as surface finish, consequently leading to variations in casting quality. This paper shows the state-of-the-art in understanding the mechanism of eutectic nucleation and growth in Al-Si alloys, inspecting samples, both quenched and uninterrupted, on the macro, micro and nano-scale. It shows that significant variations in eutectic nucleation and growth dynamics occur in AI-Si alloys as a function of the type and amount of modifier elements added. The key role of AIP particles in nucleating silicon is demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effect of Ni and Al additions on grain boundary silica in mechanically alloyed and hot isostatically pressed (HTPed) MoSi2 was investigated. Mechanical alloying Mo and Si in the absence of Al produced finely dispersed silica within a fine grained structure. Mechanically alloyed and HIPed Mo and Si with Ni and Al partially transformed the silica to crystalline oxide phases, including Al2O3. An improvement in high temperature properties is not expected due to the retention of a grain boundary silica film. Rapid grain growth resulted during HIPing, possibly due to the formation of a Ni/Fe/Al liquid phase.
Resumo:
This investigation focused on the finite element analyses of elastic and plastic properties of aluminium/alumina composite materials with ultrafine microstructure. The commonly used unit cell model was used to predict the elastic properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the plastic properties of the composites and the associated strengthening mechanism within the metal matrix material were investigated. The grain size of the matrix material was found to be an important factor influencing the mechanical properties of the composites studied. (C) 1997 Elsevier Science S.A.