11 resultados para Filler

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phonemic codes are accorded a privileged role in most current models of immediate serial recall, although their effects are apparent in short-term proactive interference (PI) effects as well. The present research looks at how assumptions concerning distributed representation and distributed storage involving both semantic and phonemic codes might be operationalized to produce PI in a short-term cued recall task. The four experiments reported here attempted to generate the phonemic characteristics of a nonrhyming, interfering foil from unrelated filler items in the same list. PI was observed when a rhyme of the foil was studied or when the three phonemes of the foil were distributed across three studied filler items. The results suggest that items in short-term memory are stored in terms of feature bundles and that all items are simultaneously available at retrieval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica-filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100 degreesC and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60-90 degreesC). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geraldton waxflower (Chamelaucium uncinatum Schauer) is Australia's most economically important cut-flower export. Its small, attractive flowers make it particularly suitable as a filler in floral arrangements. However, postharvest bud and flower abscission is a major problem during transport, handling and marketing. Abscission may be caused by wound-induced endogenous ethylene production brought about by flower tissue infection with fungal pathogens such as Botrytis cinerea. Botany and postharvest characteristics are discussed in relation to flower abscission and how resultant postharvest losses may be minimised.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the effects of level of silica filler (at 0, 10, 30, 50wt%) on the gelation and vitrification of a model silica-filled diglycidyl ether of bisphenol F (DGEBF)/methylenedianiline (MDA) system. An increased filler level is shown to decrease the gelation and vitrification times at low temperatures (below 80degreesC). FTIR cure kinetics show that the reaction rates are increased and the activation energies of gelation are reduced at these temperatures, indicating that network formation is made easier. Entropic and catalytic reasons for this phenomenon are discussed. (C) 2003 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of an organically surface modified layered silicate on the viscosity of various epoxy resins of different structures and different functionalities was investigated. Steady and dynamic shear viscosities of the epoxy resins containing 0-10 wt% of the organoclay were determined using parallel plate rheology. Viscosity results were compared with those achieved through addition of a commonly used micron-sized CaCO3 filler. It was found that changes in viscosities due to the different fillers were of the same order, since the layered silicate was only dispersed on a micron-sized scale in the monomer (prior to reaction), as indicated by X-ray diffraction measurements. Flow activation energies at a low frequency were determined and did not show any significant changes due to the addition of organoclay or CaCO3. Comparison between dynamic and steady shear experiments showed good agreement for low layered silicate concentrations below 7.5 wt%, i.e. the Cox-Merz rule can be applied. Deviations from the Cox-Merz rule appeared at and above 10 wt%, although such deviations were only slightly above experimental error. Most resin organoclay blends were well predicted by the Power Law model, only concentrations of 10 wt% and above requiring the Herschel-Buckley (yield stress) model to achieve better fits. Wide-angle X-ray measurements have shown that the epoxy resin swells the layered silicate with an increase in the interlayer distance of approximately 15 Angstrom, and that the rheology behavior is due to the lateral, micron-size of these swollen tactoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyethylene (PE) multiwalled carbon nanotubes (MWCNTs) with weight fractions ranging from 0.1 to 10 wt% were prepared by melt blending using a mini-twin screw extruder. The morphology and degree of dispersion of the MWCNTs in the PE matrix at different length scales was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD). Both individual and agglomerations of MWCNTs were evident. An up-shift of 17 cm(-1) for the G band and the evolution of a shoulder to this peak were obtained in the Raman spectra of the nanocomposites, probably due to compressive forces exerted on the MWCNTs by PE chains and indicating intercalation of PE into the MWCNT bundles. The electrical conductivity and linear viscoelastic behaviour of these nanocomposites were investigated. A percolation threshold of about 7.5 wt% was obtained and the electrical conductivity of PE was increased significantly, by 16 orders of magnitude, from 10(-20) to 10(-4) S/cm. The storage modulus (G') versus frequency curves approached a plateau above the percolation threshold with the formation of an interconnected nanotube structure, indicative of 'pseudo-solid-like' behaviour. The ultimate tensile strength and elongation at break of the nanocomposites decreased with addition of MWCNTs. The diminution of mechanical proper-ties of the nanocomposites, though concomitant with a significant increase in electrical conductivity, implies the mechanism for mechanical reinforcement for PE/MWCNT composites is filler-matrix interfacial interactions and not filler percolation. The temperature of crystallisation (T.) and fraction of PE that was crystalline (F-c) were modified by incorporating MWCNTs. The thermal decomposition temperature of PE was enhanced by 20 K on addition of 10 wt% MWCNT. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of TPU nanocomposites were prepared by incorporating organically modified layered silicates with controlled particle size. To our knowledge, this is the first study into the effects of layered silicate diameter in polymer nanocomposites utilizing the same mineral for each size fraction. The tensile properties of these materials were found to be highly dependent upon the size of the layered silicates. A decrease in disk diameter was associated with a sharp upturn in the stress-strain curve and a pronounced increase in tensile strength. Results from SAXS/SANS experiments showed that the layered silicates did not affect the bulk TPU microphase structure and the morphological response of the host TPU to deformation or promote/hinder strain-induced soft segment crystallization. The improved tensile properties of the nanocomposites containing the smaller nanofillers resulted from the layered silicates aligning in the direction of strain and interacting with the TPU sequences via secondary bonding. This phenomenon contributes predominantly above 400% strain once the microdomain architecture has largely been disassembled. Large tactoids that are unable to align in the strain direction lead to concentrated tensile stresses between the polymer and filler, instead of desirable shear stresses, resulting in void formation and reduced tensile properties. In severe cases, such as that observed for the composite containing the largest silicate, these voids manifest visually as stress whitening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two organically modified layered silicates (with small and large diameters) were incorporated into three segmented polyurethanes with various degrees of microphase separation. Microphase separation increased with the molecular weight of the poly(hexamethylene oxide) soft segment. The molecular weight of the soft segment did not influence the amount of polyurethane intercalating the interlayer spacing. Small-angle neutron scattering and differential scanning calorimetry data indicated that the layered silicates did not affect the microphase morphology of any host polymer, regardless of the particle diameter. The stiffness enhancement on filler addition increased as the microphase separation of the polyurethane decreased, presumably because a greater number of urethane linkages were available to interact with the filler. For comparison, the small nanofiller was introduced into a polyurethane with a poly(tetramethylene oxide) soft segment, and a significant increase in the tensile strength and a sharper upturn in the stress-strain curve resulted. No such improvement occurred in the host polymers with poly(hexamethylene oxide) soft segments. It is proposed that the nanocomposite containing the more hydrophilic and mobile poly(tetramethylene oxide) soft segment is capable of greater secondary bonding between the polyurethane chains and the organosilicate surface, resulting in improved stress transfer to the filler and reduced molecular slippage. (c) 2006 Wiley Periodicals, Inc.