2 resultados para Ferrosols

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrate (NO3) accumulations (up to 1880 kg NO3-N/ha for a 12-m profile) in the soils of the Johnstone River catchment (JRC) may pose a serious environmental threat to the Great Barrier Reef lagoon if the NO3 were released. The: leaching of artificial rainwater through repacked soil columns was investigated to determine the effect of low NO3/low ionic strength inputs on the NO3 Chemistry of the JRC profiles. Repacked soil columns were used to simulate the 11.5-m profiles, and the soil solution anion and cation concentrations were monitored at 10 points throughout the soil column. As the rainwater was applied, NO3 leached down the profile, with substantial quantities exiting the columns. Anion exchange was discounted as the major mechanism of NO3 release due to the substantial net loss of anions from the system (up to 2740 kg NO3-N/ha over the experimental period). As the soils were dominated by variable charge minerals, the effect of changing pH and ionic strength on the surface charge density was investigated in relation to the release of NO3 from the exchange. It was concluded that the equilibration of the soil solution with the low ionic strength rainwater solution resulted in a lessening of both the positive and negative surface charge. Nitrate was released into the soil solution and subsequently leached due to the lessening of the positive surface charge. Loss of NO3 from the soil profile was slow, with equivalent field release times estimated to be tens of years. Although annual release rates were high in absolute terms (up to 175 kg NO3-N/ha.year), they are only slightly greater than the current loss rates from fertilised sugarcane production (up to 50 kg NO3-N/ha.year). In addition to this, the large-scale release of NO3 from the accumulations will only occur until a new equilibrium is established with the input rainwater solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.