5 resultados para Ferroelectric polarization
em University of Queensland eSpace - Australia
Resumo:
This paper discusses methods for the optical teleportation of continuous-variable polarization states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve either the use of quantum nondemolition measurement or biased entanglement generated from a single squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and quantum correlations.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a response to burn injury.
Resumo:
We report new experiments that test quantum dynamical predictions of polarization squeezing for ultrashort photonic pulses in a birefringent fiber, including all relevant dissipative effects. This exponentially complex many-body problem is solved by means of a stochastic phase-space method. The squeezing is calculated and compared to experimental data, resulting in excellent quantitative agreement. From the simulations, we identify the physical limits to quantum noise reduction in optical fibers. The research represents a significant experimental test of first-principles time-domain quantum dynamics in a one-dimensional interacting Bose gas coupled to dissipative reservoirs.