17 resultados para Fermi accleration
em University of Queensland eSpace - Australia
Resumo:
A self-consistent theory is derived to describe the BCS-Bose-Einstein-condensate crossover for a strongly interacting Fermi gas with a Feshbach resonance. In the theory the fluctuation of the dressed molecules, consisting of both preformed Cooper pairs and bare Feshbach molecules, has been included within a self-consistent T-matrix approximation, beyond the Nozieres and Schmitt-Rink strategy considered by Ohashi and Griffin. The resulting self-consistent equations are solved numerically to investigate the normal-state properties of the crossover at various resonance widths. It is found that the superfluid transition temperature T-c increases monotonically at all widths as the effective interaction between atoms becomes more attractive. Furthermore, a residue factor Z(m) of the molecule's Green function and a complex effective mass have been determined to characterize the fraction and lifetime of Feshbach molecules at T-c. Our many-body calculations of Z(m) agree qualitatively well with recent measurments of the gas of Li-6 atoms near the broad resonance at 834 G. The crossover from narrow to broad resonances has also been studied.
Resumo:
We discuss the superfluid phase transition of a strongly interacting Fermi gas with unequal ( asymmetric) chemical potentials in two pairing hyperfine states, and map out its phase diagram near the BCS-BEC crossover. Our approach includes the fluctuation contributions of preformed Cooper pairs to the thermodynamic potential at finite temperature. We show that, below a critical difference in chemical potentials between species, a normal gas is unstable towards the formation of either a finite-momentum paired Fulde-Ferrell-Larkin-Ovchinnikov superconducting phase or a uniform superfluid, depending on the asymmetry and interaction strengths. We determine the value of critical chemical potential mismatch, and find that it is consistent with a recent measurement by Zwierlein et al. ( Science, 311 ( 2006) 492).
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.
Resumo:
We present theoretical predictions for the equation of state of a harmonically trapped Fermi gas in the unitary limit. Our calculations compare Monte Carlo results with the equation of state of a uniform gas using three distinct perturbation schemes. We show that in experiments the temperature can be usefully calibrated by making use of the entropy, which is invariant during an adiabatic conversion into the weakly interacting limit of molecular BEC. We predict the entropy dependence of the equation of state.
Resumo:
The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (pi,pi), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with d(xy) symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition.
Resumo:
We propose a simple picture for the occurrence of superconductivity and the pressure dependence of the superconducting critical temperature, T-SC, in ZrZn2. According to our hypothesis the pairing potential is independent of pressure, but the exchange splitting, E-xc leads to a pressure dependence in the (spin dependent) density of states at the Fermi level, D-sigma (epsilon(F)). Assuming p-wave pairing T-SC is dependent on D-sigma (epsilonF) which ensures that, in the absence of non-magnetic impurities, T-SC decreases as pressure is applied until it reaches a minimum in the paramagnetic state. Disorder reduces this minimum to zero, this gives the illusion that the superconductivity disappears at the same pressure as ferromagnetism does.
Resumo:
We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.
Resumo:
The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so-called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic-angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modeled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.
Resumo:
We present a theoretical analysis of three-dimensional (3D) matter-wave solitons and their stability properties in coupled atomic and molecular Bose-Einstein condensates (BECs). The soliton solutions to the mean-field equations are obtained in an approximate analytical form by means of a variational approach. We investigate soliton stability within the parameter space described by the atom-molecule conversion coupling, the atom-atom s-wave scattering, and the bare formation energy of the molecular species. In terms of ordinary optics, this is analogous to the process of sub- or second-harmonic generation in a quadratic nonlinear medium modified by a cubic nonlinearity, together with a phase mismatch term between the fields. While the possibility of formation of multidimensional spatiotemporal solitons in pure quadratic media has been theoretically demonstrated previously, here we extend this prediction to matter-wave interactions in BEC systems where higher-order nonlinear processes due to interparticle collisions are unavoidable and may not be neglected. The stability of the solitons predicted for repulsive atom-atom interactions is investigated by direct numerical simulations of the equations of motion in a full 3D lattice. Our analysis also leads to a possible technique for demonstrating the ground state of the Schrodinger-Newton and related equations that describe Bose-Einstein condensates with nonlocal interparticle forces.
Resumo:
We introduce a unified Gaussian quantum operator representation for fermions and bosons. The representation extends existing phase-space methods to Fermi systems as well as the important case of Fermi-Bose mixtures. It enables simulations of the dynamics and thermal equilibrium states of many-body quantum systems from first principles. As an example, we numerically calculate finite-temperature correlation functions for the Fermi Hubbard model, with no evidence of the Fermi sign problem. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.
Resumo:
We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anticommuting Grassmann variables. Furthermore, because of the overcompleteness of the basis, the phase-space distribution can always be chosen positive. This has important consequences for the sign problem in fermion physics.
Resumo:
We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behavior in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.
Resumo:
The low-energy properties of the one-dimensional anyon gas with a delta-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter alpha is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of alpha in the dispersion relations.