21 resultados para Feline immunodeficiency virus
em University of Queensland eSpace - Australia
Resumo:
Objective To determine the prevalent subtypes of feline immunodeficiency virus (FIV) present in the domestic cat population of Australia. Method Blood samples were collected from 41 FIV antibody positive cats from four cities across Australia. Following DNA extraction, polymerase chain reaction (PCR) was performed to amplify the variable V3-V5 region of the envelope (env) gene. Genotypes were assessed by direct sequencing of PCR products and comparison with previously reported FIV sequences. Phylogenetic analysis allowed classification of the Australian sequences into the appropriate subtype. Results Of the 41 FIV samples, 40 were found to cluster with previously reported subtype A isolates, whilst the remaining sample grouped within subtype B. Conclusions Subtype A was found to be the predominant FIV subtype present in Australia, although subtype B was also found. These results broaden our knowledge of the genetic diversity of FIV and the associated implications for preventative, diagnostic and therapeutic approaches.
Resumo:
Feline immunodeficiency virus (FIV), a lentivirus, is an important pathogen of domestic cats around the world and has many similarities to human immunodeficiency virus (HIV). A characteristic of these lentiviruses is their extensive genetic diversity which has been an obstacle in the development of successful vaccines. Of the FIV genes, the envelope gene is the most variable and sequence differences in a portion of this gene have been used to define 5 FIV subtypes (A, B, C, D and E). In this study, the proviral DNA sequence of the V3-V5 region of the envelope gene was determined in blood samples from 31 FIV positive cats from 4 different regions of South Africa. Phylogenetic analysis demonstrated the presence of both subtypes A and C, with subtype A predominating. These findings contribute to the understanding of the genetic diversity of FIV
Resumo:
Parasite resistance to antimalarial drugs is a serious threat to human health, and novel agents that act on enzymes essential for parasite metabolism, such as proteases, are attractive targets for drug development. Recent studies have shown that clinically utilized human immunodeficiency virus (HIV) protease inhibitors can inhibit the in vitro growth of Plasmodium falciparum at or below concentrations found in human plasma after oral drug administration. The most potent in vitro antimalarial effects have been obtained for parasites treated with saquinavir, ritonavir, or lopinavir, findings confirmed in this study for a genetically distinct P. falciparum line (3D7). To investigate the potential in vivo activity of antiretroviral protease inhibitors (ARPIs) against malaria, we examined the effect of ARPI combinations in a murine model of malaria. In mice infected with Plasmodium chabaudi AS and treated orally with ritonavir-saquinavir or ritonavir-lopinavir, a delay in patency and a significant attenuation of parasitemia were observed. Using modeling and ligand docking studies we examined putative ligand binding sites of ARPIs in aspartyl proteases of P. falciparum (plasmepsins II and IV) and P. chabaudi (plasmepsin) and found that these in silico analyses support the antimalarial activity hypothesized to be mediated through inhibition of these enzymes. In addition, in vitro enzyme assays demonstrated that P. falciparum plasmepsins II and IV are both inhibited by the ARPIs saquinavir, ritonavir, and lopinavir. The combined results suggest that ARPIs have useful antimalarial activity that may be especially relevant in geographical regions where HIV and P. falciparum infections are both endemic.
Resumo:
Background: In early 2001 Australia experienced a sudden and unexpected disruption to heroin availability, know as the 'heroin shortage'. This 'shortage has been linked to a decrease in needle and syringe output and therefore possibly a reduction in injecting drug use. We aimed to examine changes, if any, in blood-borne viral infections and presentations for injecting related problems related to injecting drug use following the reduction heroin availability in Australia, in the context of widespread harm reduction measures. Methods: Time series analysis of State level databases on HIV, hepatitis B, hepatitis C notifications and hospital and emergency department data. Examination of changes in HIV, hepatitis B, hepatitis C notifications and hospital and emergency department admissions for injection-related problems following the onset of the heroin shortage; non-parametric curve-fitting of number of hepatitis C notifications among those aged 15 - 19 years. Results: There were no changes observed in hospital visits for injection-related problems. There was no change related to the onset heroin shortage in the number of hepatitis C notifications among persons aged 15 - 19 years, but HCV notifications have subsequently decreased in this group. No change occurred in HIV and hepatitis B notifications. Conclusion: A marked reduction in heroin supply resulted in no increase in injection-related harm at the community level. However, a delayed decrease in HCV notifications among young people may be related. These changes occurred in a setting with widespread, publicly funded harm reduction initiatives.
Resumo:
We have previously shown that human papillomavirus virus-like particles (VLPs) are able to activate the Ras/MAP kinase pathway. Ras can also elicit an anti-apoptotic signal via PI3-kinase so we investigated this further. Here we show that binding of VLPs from HPV types 6b, 18, 3 1, 35 and BPV1 results in activation of PI3-kinase. Activation was achieved by either L1 or L1/L2 VLPs and was dependent on both VLP-cell interaction and correct conformation of the virus particle. VLP-induced PI3-kinase activity resulted in efficient downstream signaling to Akt and consequent phosphorylation of FKHR and GSK3 beta. We also present evidence that PV signaling is activated via the alpha 6 beta 4 integrin. These data suggest that papillomaviruses use a common receptor that is able to signal through to Ras. Combined activation of the Ras/MAP kinase and PI3-kinase pathways may be beneficial for the virus by increasing cell numbers and producing an environment more conducive to infection. (c) 2006 Elsevier Inc. All rights reserved
Resumo:
Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.
Resumo:
Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.
Resumo:
OBJECTIVES Despite few data, the treatment of syphilis in pregnant women using a single dose of benzathine penicillin is the standard of care in many resource-poor settings. We examined the effect of various doses of benzathine penicillin on pregnancy loss among women with a positive Rapid Plasma Reagin (RPR) test result in a rural South African district. METHODS All pregnant women making their first antenatal care visit during pregnancy were screened for syphilis using the RPR test. Those testing positive were counselled to receive three weekly doses of benzathine penicillin, and received a partner notification card. Pregnancy outcomes were determined from facility records or home visits where necessary. RESULTS Of 8917 women screened, 1043 (12%) had reactive syphilis serology; of those with titre data available, 30% had titres of 1:8 or greater. While 41% (n = 430) of women received all three doses as counselled, 30% (n = 312) received only one dose, and 20% (n = 207) did not return to the clinic to receive treatment. Among the 947 women with pregnancy outcome data available, there were 17 miscarriages and 48 perinatal deaths observed. There was a strong trend towards reduced risk of pregnancy loss among women receiving multiple doses of penicillin (adjusted OR for perinatal mortality for each additional dose received, 0.63; 95% CI, 0.48-0.84). CONCLUSIONS While this association requires further investigation, these results suggest that there may be substantial benefit to providing multiple doses of benzathine penicillin to treat maternal syphilis in this setting.
Resumo:
Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct.