8 resultados para Feeding-behavior
em University of Queensland eSpace - Australia
Resumo:
The structure and function of the pharyngeal jaw apparatus (PJA) and postpharyngeal alimentary tract of Arrhamphus sclerolepis krefftii, an herbivorous hemiramphid, were investigated by dissection, light and scanning electron microscopy, and X-ray analysis of live specimens. A simple model of PJA operation is proposed, consisting of an adductive power stroke of the third pharyngobranchial that draws it posteriorly while the fifth ceratobranchial is adducted, and a return stroke in which the third pharyngobranchial bone is drawn anteriorly during abduction of the fifth ceratobranchial. Teeth in the posteromedial region of the PJA are eroded into an occlusion zone where the teeth of the third pharyngobranchial are spatulate incisiform and face posteriorly in opposition to the rostrally oriented spatulate incisiform teeth in the wear zone of the fifth ceratobranchial. The shape of the teeth and their pedestals (bone of attachment) is consistent with the model and with the forces likely to operate on the elements of the PJA during mastication. The role of pharyngeal tooth replacement in maintaining the occlusal surfaces in the PJA during growth is described. The postpharyngeal alimentary tract of A. sclerolepis krefftii comprises a stomachless cylinder that attenuates gradually as it passes straight to the anus, interrupted only by a rectal valve. The ratio of gut length to standard length is about 0.5. Despite superficial similarities to the cichlid PJA (Stiassny and Jensen [1987] Bull Mus Comp Zool 151: 269-319), the hemiramphid PJA differs in the fusion of the third pharyngobranchial bones, teeth in the second pharyngobranchials and the fifth ceratobranchial face anteriorly, the presence of a slide-like diarthroses between the heads of the fourth epibranchials and the third pharyngobranchial, the occlusion zone of constantly wearing teeth, and the unusual form of the muscularis craniopharyngobranchialis. The functional relationship between these structures is explained and the consequence for the fish of a complex PJA and a simple gut is discussed. (C) 2002 Wiley-Liss, Inc.
Resumo:
This chapter outlines the relationships between a number of key factors that influence learning and memory, and illustrates them by reference to studies on the foraging behaviour of fish. Learning can lead to significant improvements in foraging performance in only a few exposures, and at least some fish species are capable of adjusting their foraging strategy as patterns of patch profitability change. There is also evidence that the memory window for prey varies between fish species, and that this may be a function of environmental predictability. Convergence between behavioural ecology and comparative psychology offers promise in terms of developing more mechanistically realistic foraging models and explaining apparently 'suboptimal' patterns of behaviour. Foraging decisions involve the interplay between several distinct systems of learning and memory, including those that relate to habitat, food patches, prey types, conspecifics and predators. Fish biologists, therefore, face an interesting challenge in developing integrated accounts of fish foraging that explain how cognitive sophistication can help individual animals to deal with the complexity of the ecological context.
Resumo:
Actinobdella inequiannulata was found on the white sucker. Catostomus commersoni, and less frequently on the longnose sucker, Catostomus catostomus, in Algonquin Provincial Park, Ontario, Canada. Catostomus commersoni parasitized with Act. inequiannulata was collected from July to October 1973 and May to October 1974. In May and October, less than 3% of the fish carried leeches. In July, 80% of the fish were parasitized with an average of 1.5 leeches/fish. Observations on leech weight suggest that young leeches attach to fish from May to September, some mature in July, and a second generation of leeches reparasitize the fish in August and September. The mean size of leeches on suckers increased from May until July, after which the size remained relatively constant. Leeches produced characteristic lesions on the opercula of suckers. Fully developed lesions on fish opercula produced by aggregated leeches had varying amounts of central erosion, extravasation, dermal and epidermal hyperplasia, and necrosis.
Resumo:
Understanding how insect pests forage on their food plants can help optimize management strategies. Helicoverpa armigera (Hubner) (Lep., Noctuidae) is a major polyphagous pest of agricultural crops worldwide. The immature stages feed and forage on crops at all stages of plant development, damaging fruiting and non-fruiting structures, yet very little is known about the influence of host type or stage on the location and behaviour of larvae. Through semi-continuous observation, we evaluated the foraging (movement and feeding) behaviours of H. armigera first instar larvae as well as the proportion of time spent at key locations on mungbean [Vigna radiata (L.) Wilczek] and pigeon pea [Cajanus cajan (L.) Millspaugh] of differing developmental stages: seedling- and mature (flowering/pod fill)-stage plants. Both host type and age affected the behaviour of larvae. Larvae spent more time in the upper parts of mature plants than on seedlings and tended to stay at the top of mature plants if they moved there. This difference was greater in pigeon pea than in mungbean. The proportion of time allocated to feeding on different parts of a plant differed with host and age. More feeding occurred in the top of mature pigeon pea plants but did not differ between mature and seedling mungbean plants. The duration of key behaviours did not differ between plant ages in either crop type and was similar between hosts although resting bouts were substantially longer on mungbeans. Thus a polyphagous species such as H. armigera does not forage in equivalent ways on different hosts in the first instar stage.
Resumo:
Although generalist predators have been reported to forage less efficiently than specialists, there is little information on the extent to which learning can improve the efficiency of mixed-prey foraging. Repeated exposure of silver perch to mixed prey (pelagic Artemia and benthic Chironomus larvae) led to substantial fluctuations in reward rate over relatively long (20-day) timescales. When perch that were familiar with a single prey type were offered two prey types simultaneously, the rate at which they captured both familiar and unfamiliar prey dropped progressively over succeeding trials. This result was not predicted by simple learning paradigms, but could be explained in terms of an interaction between learning and attention. Between-trial patterns in overall intake were complex and differed between the two prey types, but were unaffected by previous prey specialization. However, patterns of prey priority (i.e. the prey type that was preferred at the start of a trial) did vary with previous prey training. All groups of fish converged on the most profitable prey type (chironomids), but this process took 15-20 trials. In contrast, fish offered a single prey type reached asymptotic intake rates within five trials and retained high capture abilities for at least 5 weeks. Learning and memory allow fish to maximize foraging efficiency on patches of a single prey type. However, when foragers are faced with mixed prey populations, cognitive constraints associated with divided attention may impair efficiency, and this impairment can be exacerbated by experience. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Traditional measures of termite food preference assess consequences of foraging behavior such as wood consumption, aggregation and/or termite survivorship. Although studies have been done to investigate the specifics of foraging behavior this is not generally integrated into choice assay experiments. Here choice assays were conducted with small isolated (orphaned) groups of workers and compared with choice assays involving foragers from whole nests (non-orphaned) in the laboratory. Aggregation to two different wood types was used as a measure of preference. Specific worker caste and instars participating in initial exploration were compared between assay methods, with samples of termites taken from nest carton material and sites where termites were feeding. Aggregation results differ between choice assay techniques. Castes and instars responsible for initial exploration, as determined in whole nest trials, were not commonly found exploring in isolated group trials, nor were they numerous in termites taken from active feeding sites. Consequently the use of small groups of M. turneri worker termites extracted from active feeding sites may not be appropriate for use in choice assays.
Resumo:
Growth, Condition Index (CI) and survival of the pearl oysters, Pinctada maxima and R margaritifera, were measured in three size groups of oysters over 14 months at two dissimilar environments in the Great Barrier Reef lagoon. These were the Australian Institute of Marine Science (AIMS) in a mainland bay and Orpheus Island Research Station (OIRS) in coral reef waters. Temperature, suspended particulate matter (SPM) and particulate organic matter (POM) were monitored during the study. Temperature at AIMS fluctuated more widely than at OIRS both daily and seasonally, with annual ranges 20-31 degrees C and 22-30 degrees C, respectively. Mean SPM concentration at AIMS (11.1 mg l(-1)) was much higher than at OIRS (1.4 mg l(-1)) and fluctuated widely (2-60 mg l(-1)). Mean POM level was also substantially higher at AIMS, being 2.1 mg l(-1) compared with 0.56 mg l(-1) at OIRS. Von Bertalatiffy growth curve analyses showed that P. maxima grew more rapidly and to larger sizes than P. margaritifera at both sites. For the shell height (SH) of R maxima, growth index phi'=4.31 and 4.24, asymptotic size SHinfinity = 229 and 205 mm, and time to reach 120 mm SH (T-(120))= 1.9 and 2.1 years at AIMS and OIRS, respectively. While for P margaritifera, phi'=4.00 and 4.15, SHinfinity = 136 and 157 mm, and T-(120) = 2.5 and 3.9 years at AIMS and OIRS, respectively. R maxima had significantly lower growth rates and lower survival of small oysters during winter compared with summer. There were, however, no significant differences between the two sites in growth rates of P. maxima and final Cl values. In contrast, P. margaritifiera showed significant differences between sites and not seasons, with lower growth rates, survival of small oysters, final Cl values and asymptotic sizes at AIMS. The winter low temperatures, but not high SPM at AIMS, adversely affected P. maxima. Conversely, the high SPM levels at AIMS, but not temperature, adversely affected P. margaritifera. This was in accordance with earlier laboratory-based energetics studies of the effects of temperature and SPM on these two species. P maxima has potential to be commercially cultured in ca. > 25 degrees C waters with a wide range of SPM levels, including oligotrophic coral reef waters with appropriate particle sizes. It is possible to culture R margaritifera in turbid conditions, but its poor performance in these conditions makes commercial culture unlikely. (c) 2005 Elsevier B.V. All rights reserved.