3 resultados para Fat percentage
em University of Queensland eSpace - Australia
Resumo:
CONTEXT: Chitosan, a deacetylated chitin, is a widely available dietary supplement purported to decrease body weight and serum lipids through gastrointestinal fat binding. Although evaluated in a number of trials, its efficacy remains in dispute. OBJECTIVE: To evaluate the efficacy of chitosan for weight loss in overweight and obese adults. DESIGN AND SETTING: A 24-week randomised, double-blind, placebo-controlled trial, conducted at the University of Auckland between November 2001 and December 2002. PARTICIPANTS: A total of 250 participants (82% women; mean (s.d.) body mass index, 35.5 (5.1) kg/m(2); mean age, 48 (12) y). INTERVENTIONS: Participants were randomly assigned to receive 3 g chitosan/day (n = 125) or placebo (n = 125). All participants received standardised dietary and lifestyle advice for weight loss. Adherence was monitored by capsule counts. MAIN OUTCOME MEASURES: The primary outcome measure was change in body weight. Secondary outcomes included changes in body mass index, waist circumference, body fat percentage, blood pressure, serum lipids, plasma glucose, fat-soluble vitamins, faecal fat, and health-related quality of life. RESULTS: In an intention-to-treat analysis with the last observation carried forward, the chitosan group lost more body weight than the placebo group (mean (s.e.), -0.4 (0.2) kg (0.4% loss) vs +0.2 (0.2) kg (0.2% gain), P = 0.03) during the 24-week intervention, but effects were small. Similar small changes occurred in circulating total and LDL cholesterol, and glucose (P < 0.01). There were no significant differences between groups for any of the other measured outcomes. CONCLUSION: In this 24-week trial, chitosan treatment did not result in a clinically significant loss of body weight compared with placebo.
Resumo:
Detailed analysis of body composition in children has helped to understand changes that occur in growth and disease. Bioelectrical impedance analysis (BIA) has gained popularity as a simple, non-invasive and inexpensive tool of body composition assessment. Being an indirect technique, prediction equations have to be used in the assessment of body composition. There are many prediction equations available in the literature for the assessment of body composition from BIA. This study aims to cross-validate some of those prediction equations to determine the suitability of their use on Australian children of white Caucasian and Sri Lankan origins. Height, weight and BIA were measured. Total body water was measured using the isotope dilution method (D2O). Fat-mass (FM) and %FM were estimated from BIA using ten prediction equations described in the literature. Five to 14.99-year-old healthy, 96 white Caucasians and 42 Sri Lankan children were studied. The equation of Schaefer et al was the most suitable prediction equation for this group with the lowest mean bias for %FM assessment in both Caucasian (–1.0±9.6%) and Sri Lankan (1.6±5.2%) children and the fat content of the individuals did not influence the predictions by this equation. Impedance index (height2/impedance) explained for 80% of TBW in white Caucasians and 93% in Sri Lankans and figures were similar for the prediction of FFM. We conclude that BIA can be used effectively in the assessment of body composition in children. However, for the assessment of body composition using BIA, either prediction equations should be derived to suit the local populations or existing equations should be cross-validated to determine their suitability before their application.