228 resultados para Farming Systems

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenge of Research, Development and Extension (R,D&E) is to apply agricultural science to serve the real needs of production systems. The ideal is to have community partnerships involving a variety of stakeholders with equal representation, and a sharing in the design of R, D&E actions. R,D&E policy in Australia is stressing the participation of industry in new projects. The Dairy Research and Development Corporation (DRDC) in Australia, and the Brazilian Agricultural Research Corporation for Dairy (Embrapa Dairy), have developed initiatives to identify priorities for R,D&E design with participation of the industry. However, weaknesses in the methods have been identified. The present study describes the results of a strategy to involve a broader range of stakeholders in the identification of regional dairy industry needs. The findings show that overall communication, finance and marketing as the three major priorities of three study regions, meaning that primary needs for the industry are not in production technologies. This is an apparent contradiction with what some stakeholders considered valuable for dairy farms, which are pasture, genetics and nutrition technologies. The results reflect the large amount of research activity into production technology, and the relative success of R,D&E. However, it is necessary to consider issues beyond production technologies before developing R,D&E projects or presenting technologies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Smallholder farming systems in Papua New Guinea are characterised by an integrated set of cash cropping and subsistence food cropping activities. In the Highlands provinces, the subsistence food crop sub-system is dominated by sweet potato production. Coffee dominates the cash cropping sub-system, but a limited number of food crops are also grown for cash sale. The dynamics between sub-systems can influence the scope for complementarity between, and technical efficiency of, their operations, especially in light of the seasonality of demand for household labour and management inputs within the farming system. A crucial element of these dynamic processes is diversification into commercial agricultural production, which can influence factor productivity and the efficiency of crop production where smallholders maintain a strong production base in subsistence foods. In this study we use survey data from households engaged in coffee and food crop production in the Benabena district of Eastern Highlands Province to derive technical efficiency indices for each household over two years. A stochastic input distance function approach is used to establish whether diversification economies exist and whether specialisation in coffee, subsistence food or cash food production significantly influences technical efficiency on the sampled smallholdings. Diversification economics are weakly evident between subsistence food production and both coffee and cash food production, but diseconomies of diversification are discerned between coffee and cash food production. A number of factors are tested for their effects on technical efficiency. Significant technical efficiency gains are made from diversification among broad cropping enterprises.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Community awareness of the sustainable use of land, water and vegetation resources is increasing. The sustainable use of these resources is pivotal to sustainable farming systems. However, techniques for monitoring the sustainable management of these resources are poorly understood and untested. We propose a framework to benchmark and monitor resources in the grains industry. Eight steps are listed below to achieve these objectives: (i) define industry issues; (ii) identify the issues through growers, stakeholder and community consultation; (iii) identify indicators (measurable attributes, properties or characteristics) of sustainability through consultation with growers, stakeholders, experts and community members, relating to: crop productivity; resource maintenance/enhancement; biodiversity; economic viability; community viability; and institutional structure; (iv) develop and use selection criteria to select indicators that consider: responsiveness to change; ease of capture; community acceptance and involvement; interpretation; measurement error; stability, frequency and cost of measurement; spatial scale issues; and mapping capability in space and through time. The appropriateness of indicators can be evaluated using a decision making system such as a multiobjective decision support system (MO-DSS, a method to assist in decision making from multiple and conflicting objectives); (v) involve stakeholders and the community in the definition of goals and setting benchmarking and monitoring targets for sustainable farming; (vi) take preventive and corrective/remedial action; (vii) evaluate effectiveness of actions taken; and (viii) revise indicators as part of a continual improvement principle designed to achieve best management practice for sustainable farming systems. The major recommendations are to: (i) implement the framework for resources (land, water and vegetation, economic, community and institution) benchmarking and monitoring, and integrate this process with current activities so that awareness, implementation and evolution of sustainable resource management practices become normal practice in the grains industry; (ii) empower the grains industry to take the lead by using relevant sustainability indicators to benchmark and monitor resources; (iii) adopt a collaborative approach by involving various industry, community, catchment management and government agency groups to minimise implementation time. Monitoring programs such as Waterwatch, Soilcheck, Grasscheck and Topcrop should be utilised; (iv) encourage the adoption of a decision making system by growers and industry representatives as a participatory decision and evaluation process. Widespread use of sustainability indicators would assist in validating and refining these indicators and evaluating sustainable farming systems. The indicators could also assist in evaluating best management practices for the grains industry.