4 resultados para Facilitator

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant sucrose transporters (SUTs) are members of the glycoside-pentoside-hexuronide (GPH) cation symporter family (TC2.A.2) that is part of the major facilitator superfamily (MFS). All plant SUTs characterized to date function as proton-coupled symporters and catalyze the cellular uptake of sucrose. SUTs are involved in loading sucrose into the phloem and sink tissues, such as seeds, roots and flowers. Because monocots are agriculturally important, SUTs from cereals have been the focus of recent research. Here we present a functional analysis of the SUT ShSUT1 from sugarcane, an important crop species grown for its ability to accumulate high amounts of sucrose in the stem. ShSUT1 was previously shown to be expressed in maturing stems and plays an important role in the accumulation of sucrose in this tissue. Using two-electrode voltage clamping in Xenopus oocytes expressing ShSUT1, we found that ShSUT1 is highly selective for sucrose, but has a relatively low affinity for sucrose (K-0.5 = 8.26 mM at pH 5.6 and a membrane potential of -137 mV). We also found that the sucrose analog sucralose (4,1 ',6 '-trichloro-4,1 ',6 '-trideoxygalactosucrose) is a competitive inhibitor of ShSUT1 with an inhibition coefficient (K-i) of 16.5 mM. The presented data contribute to our understanding of sucrose transport in plants in general and in monocots in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. Methods and Results: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other Gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. Conclusions: AlbF is the first apparent single-component antibiotic-specific efflux pump from a Gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. Significance and Impact of the Study: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.