33 resultados para FLUORESCENT-PROBE PRODAN
em University of Queensland eSpace - Australia
Resumo:
A family of Golgi-localised molecules was recently described in animals and fungi possessing extensive coiled regions and a short (similar to40 residues) conserved C-terminal domain, called the GRIP domain, which is responsible for their location to this organelle. Using the model plant Arabidopsis thaliana, we identified a gene (AtGRIP) encoding a putative GRIP protein. We demonstrated that the C-terminal domain from AtGRIP functions as a Golgi-targeting sequence in plant cells. Localisation studies in living cells expressing the AtGRIP fused to a DsRed2 fluorescent probe, showed extensive co-location with the Golgi marker alpha-mannosidase I in transformed tobacco protoplasts. GRIP-like sequences were also found in genomic databases of rice, maize, wheat and alfalfa, suggesting that this domain may be a useful Golgi marker for immunolocalisation studies. Despite low sequence identity amongst GRIP domains, the plant GRIP sequence was able to target to the Golgi of mammalian cells. Taken together, these data indicate that GRIP domain proteins might be implicated in a targeting mechanism that is conserved amongst eukaryotes.
Resumo:
Liver fatty acid binding protein (L-FABP) contains amino acids that are known to possess antioxidant function. In this study, we tested the hypothesis that L-FABP may serve as an effective endogenous cytoprotectant against oxidative stress. Chang liver cells were selected as the experimental model because of their undetectable L-FABP mRNA level. Full-length L-FABP cDNA was subcloned into the mammalian expression vector pcDNA3.1 (pcDNA-FABP). Chang cells were stably transfected with pc-DNA-FABP or vector (pcDNA3.1) alone. Oxidative stress was induced by incubating cells with 400 mu mol/L H2O2 or by subjecting cells to hypoxia/reoxygenation. Total cellular reactive oxygen species (ROS) was determined using the fluorescent probe DCF. Cellular damage induced by hypoxia/reoxygenation was assayed by lactate dehydrogenase (LDH) release. Expression of L-FABP was documented by regular reverse transcription polyrnerase chain reaction (RT-PCR), real-time RT-PCR, and Western blot. The pcDNA-FABP-transfected cells expressed full-length L-FABP mRNA, which was absent from vector-transfected control cells. Western blot showed expression of 14-kd L-FABP protein in pcDNA-FABP-transfected cells, but not in vector-transfected cells. Transfected cells showed decreased DCF fluorescence intensity under oxidative stress (H2O2 and hypoxia/reoxygenation) conditions versus control in inverse proportion to the level of L-FABP expression. Lower LDH release was observed in the higher L-FABP-expressed cells in hypoxia/reoxygenation experiments. In conclusion, we successfully transfected and cloned a Chang liver cell line that expressed the L-FABP gene. The L-FABP-expressing cell line had a reduced intracellular ROS level versus control. This finding implies that L-FABP has a significant role in oxidative stress.
Resumo:
The acetate-utilizing microbial consortium in a full-scale activated sludge process was investigated without prior enrichment using stable isotope probing (SIP). [C-13]acetate was used in SIP to label the DNA of the denitrifiers. The [C-13]DNA fraction that was extracted was subjected to a full-cycle rRNA analysis. The dominant 16S rRNA gene phylotypes in the C-13 library were closely related to the bacterial families Comamonadaceae and Rhodocyclaceae in the class Betaproteobacteria. Seven oligonucleotide probes for use in fluorescent in situ hybridization (FISH) were designed to specifically target these clones. Application of these probes to the sludge of a continuously fed denitrifying sequencing batch reactor (CFDSBR) operated for 16 days revealed that there was a significant positive correlation between the CFDSBR denitrification rate and the relative abundance of all probe-targeted bacteria in the CFDSBR community. FISH-microautoradiography demonstrated that the DEN581 and DEN124 probe-targeted cells that dominated the CFDSBR were capable of taking Up [C-14] acetate under anoxic conditions. Initially, DEN444 and DEN1454 probe-targeted bacteria also dominated the CFDSBR biomass, but eventually DEN581 and DEN124 probe-targeted bacteria were the dominant bacterial groups. All probe-targeted bacteria assessed in this study were denitrifiers capable of utilizing acetate as a source of carbon. The rapid increase in the number of organisms positively correlated with the immediate increase in denitrification rates observed by plant operators when acetate is used as an external source of carbon to enhance denitrification. We suggest that the impact of bacteria on activated sludge subjected to intermittent acetate supplementation should be assessed prior to the widespread use of acetate in the waste-water industry to enhance denitrification.
Resumo:
Chromogenic (CISH) and fluorescent ( FISH) in situ hybridization have emerged as reliable techniques to identify amplifications and chromosomal translocations. CISH provides a spatial distribution of gene copy number changes in tumour tissue and allows a direct correlation between copy number changes and the morphological features of neoplastic cells. However, the limited number of commercially available gene probes has hindered the use of this technique. We have devised a protocol to generate probes for CISH that can be applied to formalin-fixed, paraffin-embedded tissue sections (FFPETS). Bacterial artificial chromosomes ( BACs) containing fragments of human DNA which map to specific genomic regions of interest are amplified with phi 29 polymerase and random primer labelled with biotin. The genomic location of these can be readily confirmed by BAC end pair sequencing and FISH mapping on normal lymphocyte metaphase spreads. To demonstrate the reliability of the probes generated with this protocol, four strategies were employed: (i) probes mapping to cyclin D1 (CCND1) were generated and their performance was compared with that of a commercially available probe for the same gene in a series of 10 FFPETS of breast cancer samples of which five harboured CCND1 amplification; (ii) probes targeting cyclin-dependent kinase 4 were used to validate an amplification identified by microarray-based comparative genomic hybridization (aCGH) in a pleomorphic adenoma; (iii) probes targeting fibroblast growth factor receptor 1 and CCND1 were used to validate amplifications mapping to these regions, as defined by aCGH, in an invasive lobular breast carcinoma with FISH and CISH; and (iv) gene-specific probes for ETV6 and NTRK3 were used to demonstrate the presence of t(12; 15)(p12; q25) translocation in a case of breast secretory carcinoma with dual colour FISH. In summary, this protocol enables the generation of probes mapping to any gene of interest that can be applied to FFPETS, allowing correlation of morphological features with gene copy number.
Resumo:
A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening.
Resumo:
Colloidal PbS nanocrystals over-coated with CdS are prepared in aqueous solutions and exhibit strong photoluminescence with two distinct peaks in the visible regime. A photoluminescence peak is observed at 640 nm, which is attributed to the band edge recombination in the PbS nanocrystals, and another peak at 510 nm, which is above the band edge of the PbS nanocrystals. The two PL peaks are isolated by extracting separate species of nanocrystal based upon their surface morphology. Micro-emulsions of hexane:PVA are used to remove the species containing the PL peak at 640 nm from the solution, leaving a singular peak at 510 nm. We show conclusively that the double-peaked structure observed in the photoluminescence spectra of PbS nanocrystals over-coated with CdS is due to the presence of two distinctly different nanocrystal species.
Resumo:
Pulsed field gel electrophoresis of intact chromosomes of Babesia bovis revealed four chromosomes in the haploid genome. A telomere probe, derived from Plasmodium berghei, hybridised to eight SfiI restriction fragments of genomic B. bovis DNA digests indicating the presence of four chromosomes. A small subunit (18S) ribosomal RNA gene probe hybridised to the third chromosome only. The genome size of B. bovis is estimated to be 9.4 million base pairs. The sizes of chromosomes 1, 2, 3 and 4 are estimated to be 1.4, 2.0, 2.8 and 3.2 million base pairs, respectively. (C) 1997 Australian Society for Parasitology. Published by Elsevier Science Ltd.
Resumo:
The Mellow and Autler-Townes probe absorption spectra of a three-level atom in a cascade configuration with the lower transition coherently driven and also coupled to a narrow bandwidth squeezed-vacuum field are studied. Analytical studies of the modifications caused by the finite squeezed-vacuum bandwidth to the spectra are made for the case when the Rabi frequency of the driving field is much larger than the natural linewidth. The squeezed vacuum center frequency and the driving laser frequency are assumed equal. We show that the spectral features depend on the bandwidth of a squeezed vacuum field and whether the sources of the squeezing field are degenerate (DPA) or nondegenerate (NDPA) parametric amplifiers. In a broadband or narrow bandwidth squeezed vacuum generated by a NDPA, the central component of the Mellow spectrum can be significantly narrower than that in the normal vacuum. When the source of the squeezed vacuum is a DPA, the central feature is insensitive to squeezing. The Rabi sidebands, however, can be significantly narrowed only in the squeezed vacuum produced by the DPA. The two lines of the Autler-Townes absorption spectrum can be narrowed only in a narrow bandwidth squeezed vacuum, whereas they are independent of the phase and are always broadened in a broadband squeezed vacuum.
Resumo:
Four different promoters (35S and enhanced 35S of the cauliflower mosaic virus, polyubiquitin of maize and actin1 of rice) were compared in a transient assay using maize leaves and particle bombardment. A gene encoding the jellyfish green fluorescent protein (GFP) driven by the 358 promoter was used as an internal standard to monitor the effectiveness of each bombardment. Normalisation of the transient expression assay using the GFP reference significantly reduced the variability between separate bombardments and allowed for a rapid and accurate evaluation of different promoters in microprojectile-bombarded leaves.
Resumo:
We present a method for measuring single spins embedded in a solid by probing two-electron systems with a single-electron transistor (SET). Restrictions imposed by the Pauli principle on allowed two-electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2, interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single-electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.
Resumo:
A major challenge associated with using large chemical libraries synthesized on microscopic solid support beads is the rapid discrimination of individual compounds in these libraries. This challenge can be overcome by encoding the beads with 1 mum silica colloidal particles (reporters) that contain specific and identifiable combinations of fluorescent byes. The colored bar code generated on support beads during combinatorial library synthesis can be easily, rapidly, and inexpensively decoded through the use of fluorescence microscopy. All reporters are precoated with polyelectrolytes [poly(acrylic acid), PAA, poly(sodium 4-styrenesulfonate PSSS, polyethylenimine, PEI, and/or poly(diallyldimethylammonium chloride), PDADMAC] with the aim of enhancing surface charge, promoting electrostatic attraction to the bead, and facilitating polymer bridging between the bead and reporter for permanent adhesion. As shown in this article, reporters coated with polyelectrolytes clearly outperform uncoated reporters with regard to quantity of attached reporters per bead (54 +/- 23 in 2500 mum(2) area for PEI/PAA coated and 11 +/- 6 for uncoated reporters) and minimization of cross-contamination (1 red reporter in 2500 mum(2) area of green-labeled bead for PEI/PAA coated and 26 +/- 15 red reporters on green-labeled beads for uncoated reporters after 10 days). Examination of various polyelectrolyte systems shows that the magnitude of the xi -potential of polyelectrolyte-coated reporters (-64 mV for PDADMAC/PSSS and -42 mV for PEI/PAA-coated reporters) has no correlation with the number of reporters that adhere to the solid support beads (21 +/- 16 in 2500 mum(2) area for PDADMAC/PSSS and 54 +/- 23 for PEI/PAA-coated reporters). The contribution of polymer bridging to the adhesion has a far greater influence than electrostatic attraction and is demonstrated by modification of the polyelectrolyte multilayers using gamma irradiation of precoated reporters either in aqueous solution or in polyelectrolyte solution.
Resumo:
The photodegradation of irinotecan (CPT-11), the semisynthetic derivative of the antitumor alkaloid 20(S)-camptothecin, has been investigated. The drug was exposed to laboratory light for up to 5 days in 0.9% saline solution (pH 8.5). Five significant photodegradation products were observed and a high-performance liquid chromatography (HPLC) assay was employed to isolate them from CPT-11 using gradient conditions. The structures were elucidated by nuclear magnetic resonance spectroscopy and tandem mass spectrometry and shown to be the result of extensive modifications of the lactone ring of CPT-11. Three of the compounds were found to belong to the mappicine group of alkaloids. In addition, the effect of light on the stability of CPT-11 in aqueous solutions and biological fluids was also assessed, Potassium phosphate buffers (0.05 M, pH 5.0-8.2) and saline, plasma, urine, and bile solutions containing 20 mu M CPT-11 were equilibrated in the dark for 24 h before being exposed to laboratory light for up to 171 h at ambient temperature. Four of the five identified photodegradation products were observed and quantitated by isocratic HPLC, using a different detection mode (fluorescence) than the one used for gradient elution, In general, CPT-11 was found to be unstable under neutral and alkaline conditions for all solutions investigated, with the exception of bile. We conclude that CPT-11 is photolabile and that care should be taken to protect samples, particularly those intended for the isolation and identification of novel metabolites of CPT-11.
Resumo:
Information processing accounts propose that autonomic orienting reflects the amount of resources allocated to process a stimulus. However, secondary task reaction time (RT), a supposed measure of processing resources, has shown a dissociation from autonomic orienting. The present study tested the hypothesis that secondary task RT reflects a serial processing mechanism. Participants (N = 24) were presented with circle and ellipse shapes and asked to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of a second shape (task-irrelevant). Concurrent with the counting task, participants performed a secondary RT task to an auditory probe presented at either a high or low intensity and at two different probe positions following shape onset (50 and 300 ms). Electrodermal orienting was larger during task-relevant shapes than during task-irrelevant shapes, but secondary task RT to the high-intensity probe was slower during the latter. In addition, an underadditive interaction between probe stimulus intensity and probe position was found in secondary RT. The findings are consistent with a serial processing model of secondary RT and suggest that the notion of processing stages should be incorporated into current information-processing models of autonomic orienting.