3 resultados para FLAVIVIRIDAE

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four a. helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product fort-nation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation. (c) 2006 Elsevier Inc. All rights reserved.