7 resultados para FILLED POLYPROPYLENE

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical properties of an extended Hubbard model, which is relevant to quarter-filled layered organic molecular crystals, are analyzed. We have computed the dynamical charge correlation function, spectral density, and optical conductivity using Lanczos diagonalization and large-N techniques. As the ratio of the nearest-neighbor Coulomb repulsion, V, to the hopping integral, t, increases there is a transition from a metallic phase to a charge-ordered phase. Dynamical properties close to the ordering transition are found to differ from the ones expected in a conventional metal. Large-N calculations display an enhancement of spectral weight at low frequencies as the system is driven closer to the charge-ordering transition in agreement with Lanczos calculations. As V is increased the charge correlation function displays a collective mode which, for wave vectors close to (pi,pi), increases in amplitude and softens as the charge-ordering transition is approached. We propose that inelastic x-ray scattering be used to detect this mode. Large-N calculations predict superconductivity with d(xy) symmetry close to the ordering transition. We find that this is consistent with Lanczos diagonalization calculations, on lattices of 20 sites, which find that the binding energy of two holes becomes negative close to the charge-ordering transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To evaluate the thermal responses and weight gain in preterm infants nursed in a cot on a heated, water-filled mattress (HWM) compared with infants receiving care in an air-heated incubator and to compare mothers' stress, anxiety levels and perceptions of their infants in the two groups. Methods: Stable preterm infants weighing 1300 to 1500 g were enrolled, being randomly allocated to either the study group (n = 41) receiving care in a cot on an HWM, or the control group ( n = 33) receiving incubator care. The mean daily body temperature and episodes of cold stress and hyperthermia were recorded. Weight gain (g kg(-1) body weight d(-1)) was also calculated. The mothers completed questionnaires on their perceptions of their infants, and their anxiety and stress levels before randomization, and 2 - 3 wk later during the trial. Results: The mean body temperature was similar for the first week of the trial ( study group 36.9degreesC vs controls 36.9degreesC). There were no significant differences in the incidence of cold stress, while more hyperthermic episodes were seen in the study group ( p = 0.03). There were no significant differences in weight gain during the first ( study group 21.4 g vs controls 19.6 g) or second weeks of the trial ( study group 20.5 g vs controls 19.2 g). Neonatal morbidity did not differ between the groups. There were no differences in mothers' perceptions of their babies, or feelings of stress or anxiety. Conclusion: There were no differences between infants cot-nursed on an HWM and those receiving incubator care, with the exception of episodes of high temperature. The results suggest that the HWM may be used safely for low-weight preterm infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determine the phase diagram of the half-filled two-leg ladder both at weak and strong coupling, taking into account the Cu d(x)(2)-y(2) and the O p(x) and p(y) orbitals. At weak coupling, renormalization group flows are interpreted with the use of bosonization. Two different models with and without outer oxygen orbitals are examined. For physical parameters, and in the absence of the outer oxygen orbitals, the D-Mott phase arises; a dimerized phase appears when the outer oxygen atoms are included. We show that the circulating current phase that preserves translational symmetry does not appear at weak coupling. In the opposite strong-coupling atomic limit the model is purely electrostatic and the ground states may be found by simple energy minimization. The phase diagram so obtained is compared to the weak-coupling one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t-J(')-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbor antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction J(') increases the attraction between electrons in the d(xy) channel only, so that both charge and spin fluctuations work cooperatively to produce d(xy) pairing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-linear motions of a gyrostat with an axisymmetrical, fluid-filled cavity are investigated. The cavity is considered to be completely filled with an ideal incompressible liquid performing uniform rotational motion. Helmholtz theorem, Euler's angular momentum theorem and Poisson equations are used to develop the disturbed Hamiltonian equations of the motions of the liquid-filled gyrostat subjected to small perturbing moments. The equations are established in terms of a set of canonical variables comprised of Euler angles and the conjugate angular momenta in order to facilitate the application of the Melnikov-Holmes-Marsden (MHM) method to investigate homoclinic/heteroclinic transversal intersections. In such a way, a criterion for the onset of chaotic oscillations is formulated for liquid-filled gyrostats with ellipsoidal and torus-shaped cavities and the results are confirmed via numerical simulations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.