85 resultados para FIBROBLAST PROLIFERATION
em University of Queensland eSpace - Australia
Resumo:
Basic fibroblast growth factor (FGF2) stimulates proliferation of the globose basal cells, the neuron:ll precursor in the olfactory epithelium. The present study investigates the expression of basic fibroblast growth factor and fibroblast growth factor receptors in the adult olfactory epithelium. FGF2 immunoreactivity was expressed widely in the olfactory epithelium, with the highest density of immunoreactivity in the supporting cells. In contrast, most cells in the epithelium expressed FGF2 mRNA. Fibroblast growth factor receptor-1 (FGFr1) immunoreactivity was densest in the basal cell and neuronal layers of the olfactory epithelium and on the apical surface of supporting cells. In the lamina propria FGF2 immunoreactivity and mRNA were densest in cells close to the olfactory nerve bundles. FGFr1 immunoreactivity was heaviest on the olfactory ensheathing cells. Using reverse transcriptase-polymerase chain reaction analysis, the olfactory epithelium was shown to express only three receptor splice variants, including one (FGFr1c) with which basic fibroblast growth factor has high affinity. Other receptor splice variants were present in the lamina propria. Taken together, these observations indicate endogenous sources of FGF? within the olfactory epithelium and lamina propria and suggest autocrine and paracrine pathways via which FGF2 might regulate olfactory neurogenesis. The observation of only three receptor splice variants in the olfactory epithelium limits the members of the fibroblast growth factor family which could act in the olfactory epithelium. The widespread distribution of receptors suggests that fibroblast growth factors may have roles other than proliferation of globose basal cells. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Fibroblast growth factor receptor (FGFR) signalling is important in the initiation and regulation of osteogenesis. Although mutations in FGFR1, 2 and 3 genes are known to cause skeletal deformities, the expression of FGFR4 in bony tissue remains unclear. We have investigated the expression pattern of FGFR4 in the neonatal mouse calvaria and compared it to the expression pattern in cultures of primary osteoblasts. Immunohistochemistry demonstrated that FGFR4 was highly expressed in rudimentary membranous bone and strictly localised to the cellular components (osteoblasts) between the periosteal and endosteal layers. Cells in close proximity to the newly formed osteoid (preosteoblasts) also expressed FGFR4 on both the endosteal and periosteal surfaces. Immunocytochemical analysis of primary osteoblast cultures taken from the same cranial region also revealed high levels of FGFR4 expression, suggesting a similar pattern of cellular expression in vivo and in vitro. RT-PCR and Western blotting for FGFR4 confirmed its presence in primary osteoblast cultures. These results suggest that FGFR4 may be an important regulator of osteogenesis with involvement in preosteoblast proliferation and differentiation as well as osteoblast functioning during intramembranous ossification. The consistent expression of FGFR4 in vivo and in vitro supports the use of primary osteoblast cultures for elucidating the role of FGFR4 during osteogenesis.
Resumo:
Obesity, with its related problems, is recognized as the fastest growing disease epidemic facing the world, yet we still have limited insight into the regulation of adipose tissue mass in humans. We have previously shown that adipose-derived microvascular endothelial cells (MVECs) secrete a factor(s) that increases proliferation of human preadipocytes. We now demonstrate that coculture of human preadipocytes with MVECs significantly increases preadipocyte differentiation, evidenced by dramatically increased triacylglycerol accumulation and glycerol-3-phosphate dehydrogenase activity compared with controls. Subsequent analysis identified fibroblast growth factor (FGF)-1 as an adipogenic factor produced by MVECs. Expression of FGF-1 was demonstrated in MVECs but not in preadipocytes, while preadipocytes were shown to express FGF receptors 1-4. The proliferative effect of MVECs on human preadipocytes was blocked using a neutralizing antibody specific for FGF-1. Pharmacological inhibition of FGF-1 signaling at multiple steps inhibits preadipocyte replication and differentiation, supporting the key adipogenic role of FGF-1. We also show that 3T3-L1 cells, a highly efficient murine model of adipogenesis, express FGF-1 and, unlike human preadipocytes, display no increased differentiation potential in response to exogenous FGF-1. Conversely, FGF-1-treated human preadipocytes proliferate rapidly and differentiate with high efficiency in a manner characteristic of 3T3-L1 cells. We therefore suggest that FGF-1 is a key human adipogenic factor, and these data expand our understanding of human fat tissue growth and have significant potential for development of novel therapeutic strategies in the prevention and management of human obesity.
Resumo:
Following injury, it is inherently difficult to completely restore the biomechanical properties of ligaments. Relatively little is known about the cellular mechanisms controlling ligament healing. Numerous studies have implicated fibroblast growth factors (FGFs) as key molecules during the initiation of the cellular proliferation, differentiation, migration and matrix deposition that characterise wound healing. While current surgical emphasis concentrates on growth factor intervention, the role of their cognate receptors (FGFRs) has largely been overlooked. Following transection of the medial collateral ligament (MCL) in rabbits, we examined FGFR expression over a 14-day healing period. Using semiquantitative RT-PCR, we observed a significant upregulation in FGFR2 expression after 3 days. By 7 days post injury, FGFR2 expression fell to basal levels in line with those of FGFR1 and 3, both of which remained unaffected by surgical transection. These results demonstrate a role for FGFR2 in fibroblast and endothelial cell proliferation in damaged ligament, and suggest a window for FGF therapy.
Resumo:
Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
FIBROBLAST growth factors (FGFs) are critical for normal development of the organ of Corti, and may also protect hair cells from ototoxic damage. Four different fibroblast growth factors are known, three of which have different splice variants in the extracellular immunoglobin-like (Ig) III FGF-binding domain, giving different patterns of sensitivity to the different FGFs. Analysis of a cDNA library of rat outer hair cells by the polymerase chain reaction, using isoform specific primers, showed expression only of FGF receptor 3, splice variant IIIc. This allows us to predict the pattern of sensitivity to applied FGFs, may be useful in targeting outer hair cells selectively during an FGF-based strategy for cochlear therapy. (C) 1998 Lippincott Williams & Wilkins.
Resumo:
The causes of schizophrenia are unknown, but there is evidence linking subtle deviations in neural development with schizophrenia. Embryonic brain development cannot be studied in an adult with schizophrenia, but neurogenesis and early events in neuronal differentiation can be investigated throughout adult life in the human olfactory epithelium. Our past research has demonstrated that neuronal cultures can be derived from biopsy of the human adult olfactory epithelium. In the present study, we examined mechanisms related to neurogenesis and neuronal differentiation in adults with schizophrenia versus well controls. Forty biopsies were collected under local anaesthesia from ten individuals with DSM III-R schizophrenia and ten age- and sex-matched well controls. All patients, except one, were receiving antipsychotic medication at the time of the biopsy, Immunostaining for neuronal markers indicated that neurogenesis occurred in the biopsies from both patients and controls since all contained cells expressing tubulin and/or olfactory marker protein. The major findings of this study are: 1. biopsies from patients with schizophrenia showed a significantly reduced ability to attach to the culture slide: 29.9% of patient biopsies attached compared to 73.5% of control biopsies; 2. biopsies from patients with schizophrenia had a significantly greater proportion of cells undergoing mitosis: 0.69% in the patients compared to 0.29% in the controls; and 3. dopamine (10 mu M) significantly increased the proportion of apoptotic cells in the control cultures but significantly decreased the proportion in patients' cultures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Squamous differentiation of keratinocytes is associated with decreases in E2F-1 mRNA expression and E2F activity, and these processes are disrupted in squamous cell carcinoma cell lines. We now show that E2F-1 mRNA expression is increased in primary squamous cell carcinomas of the skin relative to normal epidermis, To explore the relationship between E2F-1 and squamous differentiation further, we examined the effect of altering E2F activity in primary human keratinocytes induced to differentiate. Promoter activity for the proliferation-associated genes, cdc2 and keratin 14, are inhibited during squamous differentiation. This inhibition can be inhibited by overexpression of E2F-1 in keratinocytes, Overexpression of E2F-1 also suppressed the expression of differentiation markers (transglutaminase type 1 and keratin 10) in differentiated keratinocytes, Blocking E2F activity by transfecting proliferating keratinocytes with dominant negative E2F-1 constructs inhibited the expression of cdc2 and E2F-1, but did not induce differentiation. Furthermore, expression of the dominant negative construct in epithelial carcinoma cell lines and normal keratinocytes decreased expression from the cdc2 promoter. These data indicate that E2F-1 promotes keratinocyte proliferation-specific marker genes and suppresses squamous differentiation-specific marker genes. Moreover, these data indicate that targeted disruption of E2F-1 activity may have therapeutic potential for the treatment of squamous carcinomas.