79 resultados para FERROMAGNETIC INTERMOLECULAR INTERACTIONS
em University of Queensland eSpace - Australia
Resumo:
Langmuir and Langmuir-Blodgett (LB) films of a cationic amphiphilic porphyrin mixed with n-alkanes octadecane and hexatriacontane were prepared and characterized, to examine the influence of the alkanes on film structure and stability. While the structure present in these films was controlled primarily by the porphyrin, the addition of the alkanes resulted in significant changes to both the phase behavior of the Langmuir films and the molecular arrangement of the LB films. These changes, as well as the observed chain length effects, are explained in terms of the intermolecular interactions present in the films.
Resumo:
A model for binary mixture adsorption accounting for energetic heterogeneity and intermolecular interactions is proposed in this paper. The model is based on statistical thermodynamics, and it is able to describe molecular rearrangement of a mixture in a nonuniform adsorption field inside a cavity. The Helmholtz free energy obtained in the framework of this approach has upper and lower limits, which define a permissible range in which all possible solutions will be found. One limit corresponds to a completely chaotic distribution of molecules within a cavity, while the other corresponds to a maximum ordered molecular structure. Comparison of the nearly ideal O-2-N-2-zeolite NaX system at ambient temperature with the system Of O-2-N-2-zeolite CaX at 144 K has shown that a decrease of temperature leads to a molecular rearrangement in the cavity volume, which results from the difference in the fluid-solid interactions. The model is able to describe this behavior and therefore allows predicting mixture adsorption more accurately compared to those assuming energetic uniformity of the adsorption volume. Another feature of the model is its ability to correctly describe the negative deviations from Raoult's law exhibited by the O-2-N-2-CaX system at 144 K. Analysis of the highly nonideal CO2-C2H6-zeolite NaX system has shown that the spatial molecular rearrangement in separate cavities is induced by not only the ion-quadrupole interaction of the CO2 molecule but also the significant difference in molecular size and the difference between the intermolecular interactions of molecules of the same species and those of molecules of different species. This leads to the highly ordered structure of this system.
Resumo:
We present here a tractable theory of transport of simple fluids in cylindrical nanopores, which is applicable over a wide range of densities and pore sizes. In the Henry law low-density region the theory considers the trajectories of molecules oscillating between diffuse wall collisions, while at higher densities beyond this region the contribution from viscous flow becomes significant and is included through our recent approach utilizing a local average density model. The model is validated by means of equilibrium as well nonequilibrium molecular dynamics simulations of supercritical methane transport in cylindrical silica pores over a wide range of temperature, density, and pore size. The model for the Henry law region is exact and found to yield an excellent match with simulations at all conditions, including the single-file region of very small pore size where it is shown to provide the density-independent collective transport coefficient. It is also shown that in the absence of dispersive interactions the model reduces to the classical Knudsen result, but in the presence of such interactions the latter model drastically overpredicts the transport coefficient. For larger micropores beyond the single-file region the transport coefficient is reduced at high density because of intermolecular interactions and hindrance to particle crossings leading to a large decrease in surface slip that is not well represented by the model. However, for mesopores the transport coefficient increases monotonically with density, over the range studied, and is very well predicted by the theory, though at very high density the contribution from surface slip is slightly overpredicted. It is also seen that the concept of activated diffusion, commonly associated with diffusion in small pores, is fundamentally invalid for smooth pores, and the apparent activation energy is not simply related to the minimum pore potential or the adsorption energy as generally assumed. (C) 2004 American Institute of Physics.
Resumo:
We examine the transport of methane in microporous carbon by performing equilibrium and nonequilibrium molecular dynamics simulations over a range of pore sizes, densities, and temperatures. We interpret these simulation results using two models of the transport process. At low densities, we consider a molecular flow model, in which intermolecular interactions are neglected, and find excellent agreement between transport diffusion coefficients determined from simulation, and those predicted by the model. Simulation results indicate that the model can be applied up to fluid densities of the order to 0.1-1 nm(-3). Above these densities, we consider a slip flow model, combining hydrodynamic theory with a slip condition at the solid-fluid interface. As the diffusion coefficient at low densities can be accurately determined by the molecular flow model, we also consider a model where the slip condition is supplied by the molecular flow model. We find that both density-dependent models provide a useful means of estimating the transport coefficient that compares well with simulation. (C) 2004 American Institute of Physics.
Resumo:
We present a new approach accounting for the nonadditivity of attractive parts of solid-fluid and fluidfluid potentials to improve the quality of the description of nitrogen and argon adsorption isotherms on graphitized carbon black in the framework of non-local density functional theory. We show that the strong solid-fluid interaction in the first monolayer decreases the fluid-fluid interaction, which prevents the twodimensional phase transition to occur. This results in smoother isotherm, which agrees much better with experimental data. In the region of multi-layer coverage the conventional non-local density functional theory and grand canonical Monte Carlo simulations are known to over-predict the amount adsorbed against experimental isotherms. Accounting for the non-additivity factor decreases the solid-fluid interaction with the increase of intermolecular interactions in the dense adsorbed fluid, preventing the over-prediction of loading in the region of multi-layer adsorption. Such an improvement of the non-local density functional theory allows us to describe experimental nitrogen and argon isotherms on carbon black quite accurately with mean error of 2.5 to 5.8% instead of 17 to 26% in the conventional technique. With this approach, the local isotherms of model pores can be derived, and consequently a more reliab * le pore size distribution can be obtained. We illustrate this by applying our theory against nitrogen and argon isotherms on a number of activated carbons. The fitting between our model and the data is much better than the conventional NLDFT, suggesting the more reliable PSD obtained with our approach.
Resumo:
We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.
Resumo:
Eugenin [pGluGlnAspTyr(SO3)ValPheMetHisProPhe-NH2] has been isolated from the pouches of female Tammar wallabies (Macropus eugenii) carrying young in the early lactation period. The sequence of eugenin has been determined using a combination of positive and negative ion electrospray mass spectrometry. This compound bears some structural resemblance to the mammalian neuropeptide cholecystokinin 8 [AspTyr(SO3)MetGlyTrpMetAspPhe-NH2] and to the amphibian caerulein peptides [caerulein: pGluGlnAspTyr(SO3)ThrGlyTrpMetAspPhe-NH2]. Eugenin has been synthesized by a route which causes only minor hydrolysis of the sulfate group when the peptide is removed from the resin support. Biological activity tests with eugenin indicate that it contracts smooth muscle at a concentration of 10(-9) m, and enhances the proliferation of splenocytes at 10(-7) M, probably via activation of CCK2 receptors. The activity of eugenin on splenocytes suggests that it is an immunomodulator peptide which plays a role in the protection of pouch young.
Resumo:
We have designed an amphipathic peptide, AM1, that can self-assemble at the air-water interface to form an interfacial ensemble capable of switching between a mechanically strong cohesive film state and a mobile detergent state in response to changes in the solution conditions. The mechanical properties of the AM1 ensemble in the cohesive film state are qualitatively equivalent to the protein beta-LG, while in the mobile detergent state they are equivalent to the low molecular weight surfactant, SDS. In this work the foaming properties of AM1 are compared to those of beta-LG and SDS at the same weight concentration and it is found that AM1 adsorbs rapidly to the interface, initially forming a dense foam like that formed by SDS and superior to beta-LG. In addition, under solution conditions where interfacially adsorbed AM1 forms a cohesive film state the foam stability is high, comparable to beta-LG. However when the interfacially adsorbed AM1 forms a foam under detergent-state conditions, the foam stability is poor. We have achieved control of foam stability through the design of a peptide that exhibits stimuli-responsive changes in the extent of intermolecular interactions between peptide molecules adsorbed at the air water interface. These results illustrate the exciting potential of peptide surfactants to form a new class of stimuli-responsive foaming agents.
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
Zinc fingers are recognized as small protein domains that bind to specific DNA sequences. Recently however, zinc fingers from a number of proteins, in particular the GATA family of transcription factors, have also been implicated in specific protein-protein interactions. The erythroid protein GATA-1 contains two zinc fingers: the C-finger, which is sufficient for sequence-specific DNA-binding, and the N-finger, which appears both to modulate DNA-binding and to interact with other transcription factors. We have expressed and purified the N-finger domain and investigated its involvement in the self-association of GATA-1. We demonstrate that this domain does not homodimerize but instead makes intermolecular contacts with the C-finger, suggesting that GATA dimers are maintained by reciprocal N-finger-C-finger contacts. Deletion analysis identifies a 25-residue region, C-terminal to the core N-finger domain, that is sufficient for interaction with intact GATA-1. A similar subdomain exists C-terminal to the C-finger, and we show that self-association is substantially reduced when both subdomains are disrupted by mutation. Moreover, mutations that impair GATA-1 self-association also interfere with its ability to activate transcription in transfection studies.
Resumo:
Variation of suicide with socio-economic status (SES) in urban NSW (Australia) during 1985-1994, by sex and country or region of birth, was examined using Poisson regression analysis of vital statistics and population data (age greater than or similar to 15 yr). Quintiles of SES were defined by municipality of residence and comparisons of suicide by SES were adjusted for age and country (or region) of birth (COB), and examined by COB. Risk of suicide in females was 28% that of males for all adults and 21% for youth (age 15-24 yr). Suicide risk was lower in males from southern Europe, Middle East and Asia, and higher in northern and eastern European males, compared to the Australian-born. Risks for suicide increased significantly with decreasing SES in males, but not in females. The relationship of male suicide and SES was stronger when controlled for COB. For males, the relative risk of suicide, adjusted for age and COB, was 66% higher in the lowest SES quintile compared to the highest quintile, and 39% higher for youth (age 15-24 yr). For male suicide, the population attributable fraction for SES (less than the highest quintile) was 27%. Analysis of SES differentials in male suicide according to COB indicated a significant inverse suicide gradient in relation to SES for the Australian-born and those burn in New Zealand and the United Kingdom or fire. but not in non-English speaking COB groups, except for Asia. For Australian-born males, suicide risk was 71% higher in the lowest SES group (compared to the highest), adjusted for age. These findings indicate that SES plays an important role in male suicide rates among the Australian-born and migrants from English-speaking countries and Asia, and among youth; but not in female suicide, nor suicide in most non-English speaking migrant groups. Reduction in SES differentials through economic and social policies may reduce male suicide in lower SES groups and should be seen to be at least as important as individual level interventions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The study investigated the behaviors and interactions of children in structured and unstructured groups as they worked together on a 6-week social studies activity each term for 3 school terms. Two hundred and twelve children in Grade 1 and 184 children in Grade 3 participated in the study. Stratified random assignment occurred so that each gender-balanced group consisted of 1 high-, 2 medium-, and 1 low-ability student. The results show that the children in the structured groups were consistently more cooperative and they provided more elaborated and nonelaborated help than did their peers in the unstructured groups. The children in the structured groups in Grade 3 obtained higher reading and learning outcome scores than their peers in the unstructured groups.
Resumo:
The properties of the hydrogen-bonded polymer blends of poly(4-vinylphenol) and poly(2-ethoxyethyl methacrylate) are presented. Spectroscopic techniques such as C-13 solid-state NMR and FT-IR are used to probe specific interactions of the blends at various compositions. Spectral features from both techniques revealed that site-specific interactions are present, consistent with a significant degree of mixing of the blend components. Changes in chemical shift and line shape of the phenolic carbon and carbonyl resonances in the C-13 CPMAS spectra of the blends as a function of composition are interpreted as resulting from changes in the relative intensities of two closely overlapped signals. A quantitative measure of hydrogen-bonded carbonyl groups using C-13 NMR has been obtained which agreed well with the results from FT-IR analyses. It is also shown that C-13 NMR can be used to measure the fraction of hydroxyl groups associated with carbonyl groups, which was not possible previously using FT-IR due to extensive overlapping of bands in the hydroxyl stretching region. The results of measurements of H-1 T-1 and 1H T-1 rho indicate that PVPh and PEEMA are intimately mixed on a scale less than 2-3 nm.